

Techniques and Methodologies
Group (TMG)

UN/CEFACT’s Modeling Methodology (UMM):

UMM Meta Model – Foundation Module Version 1.0
Technical Specification

2006-10-06

Table of Contents

1 About this Document ... 2

1.1 Status of this Document ... 2
1.2 Revision History .. 2
1.3 Document Context ... 2

2 Project Team .. 3
2.1 Disclaimer .. 3
2.2 Contact ... 3
2.3 Project Team Participants .. 3

3 Introduction.. 4
3.1 Audience .. 4
3.2 Related Documents .. 4
3.3 UN/CEFACT’s Modeling Methodology (UMM): Overview................ 5
3.4 Objectives... 6

3.4.1 Goals of the Technical Specification... 6
3.4.2 Requirements ... 6
3.4.3 Caveats and Assumptions .. 7

3.5 Structure of the UMM Foundation Module ... 7
4 Dependency on other UMM modules (normative) 9
5 UMM Foundation Module ... 10

5.0 Foundation Module Management .. 10
5.0.1 Conceptual Description (informative) ... 10
5.0.2 Stereotypes and Tag Definitions (normative)...................................... 11
5.0.3 Constraints (normative) ... 13
5.0.4 OCL methods used in the

UMM Foundation Module Management (normative) 14
5.1 Business Domain View.. 15

5.1.1 Conceptual Description (informative) ... 15
5.1.2 Stereotypes and Tag Definitions (normative)...................................... 16
5.1.3 Constraints (normative) ... 21
5.1.4 Example (informative)... 23
5.1.5 OCL methods used in all packages of the BDV (normative) 24

5.2 Business Requirements View... 26
5.2.0 Sub-Views in the Requirements View... 26

5.2.0.1 Conceptual Description (informative) ... 26
5.2.0.2 Stereotypes and Tag Definitions (normative).................................. 27
5.2.0.3 Constraints (normative) ... 29

5.2.1 Business Process View .. 30
5.2.1.1 Conceptual Description (informative) ... 30
5.2.1.2 Stereotypes and Tag Definitions (normative).................................. 31
5.2.1.3 Constraints (normative) ... 33
5.2.1.4 Example (informative)... 34

5.2.2 Business Entity View... 35
5.2.2.1 Conceptual Description (informative) ... 35
5.2.2.2 Stereotypes and Tag Definitions (normative).................................. 35
5.2.2.3 Constraints (normative) ... 36
5.2.2.4 Example (informative)... 37

5.2.3 Partnership Requirements View .. 39
5.2.3.1 Conceptual Description (informative) ... 39

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification i

5.2.3.2 Stereotypes and Tag Definitions (normative).................................. 42
5.2.3.3 Constraints (normative) ... 44
5.2.3.4 Example (informative)... 50

5.2.4 OCL methods used in all packages of the BRV (normative) 51
5.3 Business Transaction View.. 56

5.3.0 Views in the Transaction View.. 56
5.3.0.1 Conceptual Description (informative) ... 56
5.3.0.2 Stereotypes and Tag Definitions (normative).................................. 57
5.3.0.3 Constraints (normative) ... 58

5.3.1 Business Choreography View.. 59
5.3.1.1 Conceptual Description (informative) ... 59
5.3.1.2 Stereotypes and Tag Definitions (normative).................................. 60
5.3.1.3 Constraints (normative) ... 62
5.3.1.4 Example (informative)... 64

5.3.2 Business Interaction View ... 65
5.3.2.1 Conceptual Description (informative) ... 65
5.3.2.2 Stereotypes and Tag Definitions (normative).................................. 67
5.3.2.3 Constraints (normative) ... 73
5.3.2.4 Example (informative)... 79

5.3.3 Business Information View ... 80
5.3.3.1 Conceptual Description (informative) ... 80
5.3.3.2 Stereotypes and Tag Definitions (normative).................................. 81
5.3.3.3 Constraints (normative) ... 82
5.3.3.4 Example (informative)... 83

5.3.4 OCL methods used in all packages of the BTV (normative)............... 84
Copyright Statement .. 90

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification ii

1 About this Document 37

38
39
40

41

1.1 Status of this Document
This document has completed the Open Development Process (ODP) of UN/CEFACT on 2006-10-06. It
is a UN/CEFACT Technical Specification.

1.2 Revision History
Version Release Date Comment
Candidate
for 1.0

First Working
Draft

2005-08-11

Candidate
for 1.0

Second Working
Draft

2006-03-17

Candidate
for 1.0

Final Working
Draft

2006-06-20

Version 1.0 Technical
Specification

2006-10-06

1.3 Document Context 42
43
44
45
46
47
48
49
50
51
52
53
54
55

The UMM meta model is divided in a set of meta modules. This means the UMM meta model is
partitioned into functional levels, ranging from core, minimal functionality to complete functionality. The
following partitions levels have been defined for meta modules:

• Base: Covers the fundamental principles that are shared across all the other modules.
• Foundation: Includes the core concepts of the UMM. Defines all the concepts that are used as

part of the minimal methodology to produce a UMM compliant business collaboration model
• Specialization: Multiple specialization modules might define add-on concepts to the

foundation. Each specialization module addresses a specialized type of analysis that extends the
foundation module at a well-defined extension point for a certain topic. Specialization modules
might become candidates for later inclusion into the foundation module.

• Extension: Extension modules serve the same purpose as specialization modules. Whereas
specialization modules are developed and maintained by UN/CEFACT, extension modules are
adding features that are created and maintained by external organization.

 56
57
58

Figure 1 Module structure of the UMM meta model

This specification defines the foundation module of UMM.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 2

2 Project Team 59

60

61

62
63
64
65

66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

2.1 Disclaimer
The views and specification expressed in this document are those of the authors and are not necessarily
those of their employers. The authors and their employers specifically disclaim responsibility for any
problems arising from correct or incorrect implementation or use of this technical specification.

2.2 Contact
Name: Christian Huemer
 Company: Vienna University of Technology
 Street: Favoritenstrasse 9-11/188
 City, state, zip/other: 1040
 Nation: Austria
 Phone: +43 1 58801 18882
 Email: huemer@big.tuwien.ac.at

2.3 Project Team Participants

Project Team Lead: Christian Huemer Austria
Editing Team: Jens Dietrich (Lead Editor) Germany
 Birgit Hofreiter Austria
 Christian Huemer Austria

Philipp Liegl Austria
 Rainer Schuster Austria
 Marco Zapletal Austria

Contributors: Steve Capell Australia

Sylvie Colas France
William McCarthy USA
Glenn Miller Canada
Harry Moyer Australia
Nita Sharma USA
Gunther Stuhec Germany
Jörn Guy Suess Germany
Anders Tell Sweden

The Editing Team of this UMM foundation module likes to thank former members of TMG’s Business
Process Working Group (BPWG) who have spent enormous efforts in putting the UMM into a stage that
we were able to build upon in order to create this foundation module:

 Jim Clark USA
 Kenji Itoh Japan
 Paul Levine USA
 Klaus-Dieter Naujok Canada
 Dave Welsh USA

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 3

3 Introduction 104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138

3.1 Audience

A reader of the document MUST have a deep understanding of UML 1.4. She or he MUST be able to
understand meta models denoted as UML class diagrams. She or he SHOULD be familiar with the UML
1.4. meta model, at least she or he MUST be able to check back with the UML 1.4. meta model. The
reader SHOULD be familiar with OCL 2.0 in order to understand the OCL constraints of this UMM
profile – those who are not familiar with OCL are provided with a plain text description of the constraint.

The information described in this manual is aimed at

• advanced business process modelers who check a UML model for UMM compliance (if not
supported by a tool)

• advanced business process modelers who train other business process modelers and business
process analysts

• software designers who want to produce UML tools providing support for this UMM foundation
module

• software designers who want to produce tools to transform UMM compliant business
collaboration models into specifications of the IT-layer (ebXML, Web Services, UN/EDIFACT,
etc.).

• software designers who want to produce repositories to register UMM compliant business
collaboration models

3.2 Related Documents
• UN/CEFACT

o UN/CEFACT Open Development Process
http://www.unece.org/cefact/cf_plenary/plenary05/cf_05_05e.pdf

o BCSS: A UML Profile for Core Components
BCSS LINK

o Core Component Technical Specification
http://www.unece.org/cefact/ebxml/CCTS_V2-01_Final.pdf

• International Organization for Standardization (ISO)
o Open-edi Reference Model. ISO/IEC 14662

http://standards.iso.org/ittf/PubliclyAvailableStandards/c037354_ISO_IEC_14662_2004(E).zip
• Object Management Group (OMG)

o Unified Modeling Language Specification (UML), Version1.4.2
http://www.omg.org/docs/formal/05-04-01.pdf

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 4

3.3 UN/CEFACT’s Modeling Methodology (UMM): Overview 139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

UN/CEFACT’s Modeling Methodology (UMM) is a UML modeling approach to design the business
services that each partner must provide in order to collaborate. It provides the business justification for
the services to be implemented in a service-oriented collaboration architecture. Thus, a primary vision of
UN/CEFACT is to capture the business knowledge that enables the development of low cost software
based on service-oriented architectures (SOA) helping the small and medium size companies (SMEs), and
emerging economies to engage in e-Business practices. UMM focuses on developing a global
choreography of inter-organizational business processes and their information exchanges. UMM models
are notated in UML syntax and are platform independent models. The platform independent UMM
models identify which services have to be realized in a service-oriented architecture implementing the
business collaboration. This approach provides insurance against technical obsolescence.

The UMM, as described in this document is the formal description technique for describing any Open-edi
scenario as defined in ISO/IEC 14662 Open-edi reference model. An Open-edi scenario is a formal means
to specify a class of business transactions having the same business goal, such as, purchasing or inventory
management. The primary scope of UMM is the Business Operations View (BOV) and not the Functional
Service View (FSV) as defined in ISO/IEC IS 14662. The BOV is defined as “a perspective of business
transactions limited to those aspects regarding the making of business decisions and commitments among
organizations”, while the FSV is focused on implementation specific, technological aspects of Open-edi.
The commitments of the BOV layer are reflected in the choreography of the inter-organizational business
process and its information exchanges. At the FSV layer this choreography must be implemented by a set
of composite services. It follows, that UMM on the BOV layer defines what the business is about and
technologies on the FSV layer define how to implement the business by a service-oriented architecture.

This version of the UMM consists of three views each covering a set of well defined artifacts:

• Business Domain View (BDV)
• Business Requirements View (BRV)
• Business Transaction View (BTV)

Business Domain View (BDV): The BDV is used to gather existing knowledge. It identifies the business
processes in the domain and the business problems that are important to stakeholders. It is important at
this stage that business processes are not constructed, but discovered. Stakeholders might describe intra-
organizational as well as inter-organizational business processes. All of this takes place in the language of
the business experts and stakeholders. The business domain view results in a categorization of the
business domain (manifested as a hierarchical structure of packages) and a set of relevant business
processes (manifested as use cases). The result may be depicted in use case diagrams.

Business Requirements View (BRV): The goal of the BRV is identifying collaborative business processes
between different business partner types and describing the requirements regarding these collaborative
business processes. In order to identify collaborative business processes the static descriptions of the
internal business processes discovered in the BDV are described in more detail and are analyzed
regarding their dynamic behavior and their relationship to each other. Based on this analysis the relevant
“real-world”-concepts in the domain of the collaboration are identified. This is done by focusing on
business entities, which are “real-word” things having business significance and a shared among the
business partners involved in the collaboration. The requirements of aligning the states of these business
entities between the business partners are documented by business collaboration use cases and by
business transaction use cases.
Business Transaction View (BTV): The BTV represents the view of the business process analyst who
transforms the requirements into a choreography of information exchanges. Currently, the overall

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 5

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

209
210
211
212
213
214
215
216
217
218
219

220

221
222
223
224
225
226
227
228
229
230
231
232
233

choreography of a business collaboration is defined by an activity graph called business collaboration
protocol. In a future version other alternatives may be developed. The business collaboration protocol
choreographs the flow among business interactions. This flow depends on the states of business entities.
Currently, a business interaction is always defined by a business transaction. Other alternatives may be
developed in future versions. A business transaction defines a simple choreography of exchanging
business information between two authorized roles and an optional response. A business transaction
identifies the business actions of each partner responsible for sending and receiving the business
information. These actions correspond to the services that must be implemented on each business
partner’s side in a service-oriented collaboration architectur. The business information exchanged
corresponds to the input/output of these services. The choreography among the business transactions –
described by the business collaboration protocol in UMM – is easily mapped to machine-readable
choreography languages (such as BPEL, WS-CDL, BPSS).
An execution of a business transaction usually results in the change of state of one or more business
entities. Thus, the information exchanged in a transaction should be limited to the minimum information
needed to change the state of a business entity. Nevertheless, UMM allows the definition of an
information exchange in a document-centric approach – even if this is not recommended. A business
transaction leads to synchronized states of the business objects at both partners participating in a business
transaction. Inasmuch, a business transaction is a unit of work that allows roll-back. A business
transaction has a number of quality of service (QoS) parameters that represent security and timing
requirements. These are specifed in tagged values.

3.4 Objectives

3.4.1 Goals of the Technical Specification
The goals of this specification are:

• To define the semantics of well-formed UMM business collaboration models.
• To define the validation rules for UMM compliant business collaboration models.
• To clarify the basic concepts that a UMM-compliant business collaboration model is based on.
• To provide an unambiguous definition for UMM business collaboration models that allows a

unambigiuous mapping to artifacts for deployment in a service-oriented architecture. Note, that
the mapping itself is not part of UMM.

• To define a UML profile for the UMM foundation module that allows UML tool vendors to
customize their tools to be UMM compliant. Better tool support will lead to a growing UMM user
base.

3.4.2 Requirements
This specification is guided by the following key requirements derived from the above goals:

• The UMM foundation module defines only those modeling concepts that are considered as
fundamental to deliver a UMM compliant model. This means it delivers concepts to structure the
domain (in the business domain view), to gather requirements for collaborative business processes
(in the business requirements view) and to provide a choreography of business information
exchanges (in the business transaction view). Additional advanced modeling concepts shall be
covered in specialization and extension modules.

• The UMM foundation module is directed towards the business operational view of Open-edi. This
means it is independent of certain implementation technologies used in SOAs like Web Services
and ebXML or whatever comes up in the future. However, the UMM compliant business
collaboration models must be defined in a way that allows a mapping to an implementation
technology of choice. Such a mapping is not part of the UMM foundation module. It is a
candidate for a specialization/extension module.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 6

234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253

254

255
256
257

• Today, the UML is the most commonly supported modeling language by modeling tools. In order
to use the broad range of tools, a UMM business collaboration model must be a special kind of
UML model. Thus, the UMM foundation module is based on the UML meta model. In fact, it
provides a UML Profile consisting of stereotypes, tagged definitions and constraints.

• In order to support a broad adoption of the UMM-modeling approach the formal descriptions of
the UMM shall be supplemented by a set of examples that show UMM compliant artifacts.

3.4.3 Caveats and Assumptions
This specification makes the following assumptions:

• This UML profile is based on the UML meta-model version 1.4.2. This version is the current ISO
version. Using another UML meta-model as a basis for the development of a UMM compliant
business collaboration model will not deliver correct results.

• The basic concepts of the UMM and the way they relate to each other shall be described and
explained by means of a meta model (to be found in the non-normative “conceptual description”
sections of this document)

• Most modeling tools do not evaluate OCL constraints against model data. Accordingly, validation
of UMM semantics as defined by the OCL constraints in this specification will normally only be
possible using either an external validation service or a custom plug-in.

• Different specialization and extension modules might extend the foundation module in order to
define additional semantics to the minimum semantics required to create a UMM compliant
business collaboration model.

3.5 Structure of the UMM Foundation Module

Foundation

BusinessDomainView

BusinessRequirementsView

BusinessTransactionView

BusinessProcessView

BusinessEntityView

PartnershipRequirementsView

BusinessChoreographyView

BusinessInteractionView

BusinessInformationView

5

5.1

5.2

5.3

5.3.1

5.2.1

5.2.2

5.2.3

5.3.2

5.3.3

Figure 2 Package overview of UMM Foundation Module meta model

Section 5 defines the UML profile of the foundation module of the UMM meta model. The figure below
shows the package structure of the foundation module of the UMM meta model. The number depicted in

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 7

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

the folders of this figure refers to the subsection which defines the stereotypes, tag definitions and
constraints of the corresponding package. The first level packages of the foundation module conform to
the three views of the current UMM version: Business Domain View (5.1), Business Requirements View
(5.2), and Business Transaction View (5.3). Since the Business Domain View (5.1) does not include
different types of artefacts, it is not split into sub-packages. The Business Requirements View (5.2)
covers three different types of artefacts: activity graphs of business processes, business entity life cycles
and collaboration requirements defined in use cases. Accordingly, it consists of the sub-packages
Business Process View (5.2.1), Business Entity View (5.2.2), and Partnership Requirements View (5.2.3).
Similarly, the Business Transaction View (5.3) is built by three different types of artefacts: choreography
of a business collaboration, choreography of business interactions (currently i.e. business transactions)
leading to synchronized states, and business information exchanged in the interactions. Consequently, it
includes the sub-packages Business Choreography View (5.3.1), Business Interaction View (5.3.2), and
Business Information View (5.3.3).
Each section describing a package is structured in the same way. The first subsection is informative. It
describes the conceptual model of the artefact that is addressed by the package. The second subsection is
normative and defines all the stereotypes and associated tag definitions that are defined in the package.
The third subsection is normative and includes all the constraints both in plain text and in OCL that apply
to the respective package. The fourth subsection is informative and depicts an example instance of the
artefact type addressed by the package.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 8

4 Dependency on other UMM modules (normative) 277

cd Foundation - Dependencies

Base Foundation

1.0 1.0
«import»«import»

 278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

Figure 3 UMM Foundation Dependencies

The UMM foundation module 1.0 is built on top of the UMM base module 1.0. This means that all
stereotypes and tag definitions defined in the UMM base module 1.0 are imported into the UMM
foundation module 1.0. The figure below shows the stereotypes defined in the UMM base module also
used in the foundation module. Note, the stereotypes of the base module are depicted in grey background
in all figures of this specification. The formal definition of the stereotypes RegistryObject and
BusinessLibraryPackage is given in the UMM base module 1.0 specification. In the foundation module,
packages - that are containers of stereotypes realizing main UMM artefacts - are defined as
specializations of the base stereotype BusinessLibraryPackage. This means that such packages and their
contents are candidates for registration in a registry. In the UMM foundation module 1.0 we do not define
any stereotype that directly inherits from RegistryObject. As a consequence, only packages are candidates
for registration.

cd Management - Abstract Syntax

Package
BusinessLibraryPackage

ModelElement
RegistryObject

+ baseURN: String
+ businessTerrm: String [0..*]
+ status: String [0..1]
+ version: String [0..1]

+ copyright: String [0..*]
+ owner: String [0..*]
+ reference: String [0..*]

294
295

Figure 4 UMM Base Abstract Syntax

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 9

5 UMM Foundation Module 296

297

298

5.0 Foundation Module Management

5.0.1 Conceptual Description (informative)
cd Foundation - Conceptual

BusinessDomainView BusinessRequirementsView BusinessTransactionView

BusinessCollaborationModel

+ justification: String

0..1

299
300
301
302
303
304
305
306
307
308
309
310
311

1 1

Figure 5 UMM Foundation Module Management - Conceptual Overview

A project that follows the UMM approach leads to a business collaboration model. A business
collaboration model that is UMM compliant is stereotyped as BusinessCollaborationModel. As described
above the UMM is built by three views. The business domain view focuses on understanding the business
domain under consideration. Although this view is considered as important, the results may be captured
in non-UML compliant artefacts and/or may not be included in the model and referenced instead. Since
the business domain view is optional, the BusinessCollaborationModel is composed of zero or one
BusinessDomainView. The business requirements view and the business transaction view are mandatory
parts of a business collaboration model. Thus a BusinessCollaborationModel is composed of exactly one
BusinessRequirementsView. Similarly, a BusinessCollaborationModel is composed of exactly one
BusinessTransactionView.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 10

5.0.2 Stereotypes and Tag Definitions (normative) 312
313

cd Foundation - Abstract Syntax

Package
BusinessDomainView

Package
BusinessRequirementsView

Package
BusinessTransactionView

Model
BusinessCollaborationModel

Package
RegistryObject

BusinessLibraryPackage

+ copyright: String [0..*]
+ owner: String [0..*]
+ reference: String [0..*]

+ justification: String

 314
315
316

Figure 6 UMM Foundation Module Management - Abstract Syntax

Stereotype BusinessCollaborationModel

Base Class Model

Parent BusinessLibraryPackage (from Base Module)

A business collaboration model is a model that is compliant to the UMM meta model. It MUST be
compliant to the base and foundation module, and it MAY be compliant to one or more specialisation
and/or extension modules.

Description

justification

Tag Definition

Type String

Multiplicity 1

Description Explains the reason from a business perspective why the given business
collaboration is considered for possible business collaborations.

Inherited tagged values:
− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 317

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 11

318
Stereotype BusinessDomainView

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

A business domain is a framework for identification and understanding of business processes as well as
categorizing them according to a classification schema. The business domain view is a container capturing
the categorization scheme and categorized business processes.

Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 319
Stereotype BusinessRequirementsView

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

The business requirements view is a container for all elements needed to identify and describe the
requirements on a collaboration between business partner types playing certain authorized roles. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 320
Stereotype BusinessTransactionView

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

The business transaction view is a container for all elements needed to describe the choreography of a
business collaboration at various levels and the information exchanged in each step of the choreography. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 321

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 12

5.0.3 Constraints (normative) 322
323

A BusinessCollaborationModel MUST NOT contain more than one BusinessDomainView package (but it MAY contain no
BusinessDomainView package at all)

package Model_Management
context Model

inv zeroToOneBusinessDomainView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->select(isBusinessDomainView())->size()<=1

 324

A BusinessCollaborationModel MUST contain exactly one BusinessRequirementsView package.

package Model_Management
context Model

inv oneBusinessRequirementsView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->one(isBusinessRequirementsView())

 325

A BusinessCollaborationModel MUST contain exactly one BusinessTransactionView package

package Model_Management
context Model

inv oneBusinessTransactionView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->one(isBusinessTransactionView())

 326

A BusinessDomainView, the BusinessRequirementsView, and the BusinessTransactionView MUST be directly located under
the root of the BusinessCollaborationModel.

package Model_Management
context Package

inv rootLevelPackages
 (self.isBusinessDomainView() or self.isBusinessRequirementsView() or
 self.isBusinessTransactionView()) implies
 self.namespace.isBusinessCollaborationModel()

 327

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 13

5.0.4 OCL methods used in the UMM Foundation Module Management (normative) 328

329

OCL-Methods

package Foundation::Core
context ModelElement

--Predefined method which evaluates, if the given Modelelement
--has a stereotype equal to the passed name
def:
let hasStereotype (st : String) : Boolean =
 self.stereotype->select(cst | cst.name = st)->notEmpty()

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationModel'
def:
let isBusinessCollaborationModel() : Boolean =
 self.oclIsKindOf(Model) and
 self.hasStereotype('BusinessCollaborationModel')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessDomainView'
def :
let isBusinessDomainView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessDomainView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessRequirementsView'
def :
let isBusinessRequirementsView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionView'
def :
let isBusinessTransactionView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessTransactionView')

 330

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 14

5.1 Business Domain View 331

332 5.1.1 Conceptual Description (informative)
cd BusinessDomainView - Conceptual

BusinessArea ProcessArea

BusinessPartnerType

BusinessProcess

BusinessCategory

Stakeholder

BusinessDomainView
0..*

0..1
1..*

0..*

0..1

0..*

1..*

participates

0..*

0..*

0..*

0..1

0..*0..1

0..*

0..1

0..* isOfInterestTo
0..*

 333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

Figure 7 BusinessDomainView Conceptual Overview

The business domain view is used to discover business processes that are of relevance in a project. A
business process is executed by at least one (but possibly more) business partner types. A business partner
type might execute multiple business processes. Thus, the participates association between
BusinessPartnerType and BusinessProcess is a (1..n) to (0..n) association. A business partner type has a
vested interest in the business process. This is the characteristic of a stakeholder. Thus, a
BusinessPartnerType is a specialization of a Stakeholder. In general, a stakeholder does not need to
participate in a business process. A stakeholder might have interest in multiple business processes and a
business process might be of interest to multiple stakeholders. The relationship between a
BusinessProcess and a Stakeholder is described by the isOfInterestTo dependency in UMM. A business
process can be decomposed into sub-processes using the «include» and «extends» association stereotypes.
This is denoted by the unary (0..1) to (0..*) composition of BusinessProcess.

To enable users to readily identify business processes, these business processes should be classified into
business categories. Thus, the BusinessDomainView is composed of one or many (1..n)
BusinessCategories. A business category might be recursively composed of other business categories.
This means business categories might build a hierarchy. Hence, a unary (0..1) to (0..n) composition is
defined for BusinessCategory. A business process is assigned to exactly one business category. A
business category on the lowest level of a business category hierarchy includes one or more processes,
whereas a business category on a higher level does not include any business process. Accordingly, the
composition between BusinessCategory and BusinessProcess is 1 to (0..n).

UN/CEFACT suggests - but does not mandate - the use of specializations of the stereotype of
BusinessCategory. These specializations are BusinessArea and ProcessArea. A business area corresponds
to a division of an organization and a process area corresponds to a set of common operations within the
business area. Similarly to business category, business area as well as process area may form a hierarchy.
Thus, BusinessArea and ProcessArea inherit the unary composition from BusinessCategory. However, it

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 15

362
363
364
365
366
367
368
369
370
371

372
373

is important that business areas include only business areas except the lowest level of a business area
hierarchy which is composed of one or more process areas. Therefore, we have a (0..1) to (0..n)
composition between BusinessArea and ProcessArea. Business areas must not include business
processes. The lowest level of a process area hierarchy includes one or more business processes. Whereas
process areas in a higher level of the hierarchy do not include any business process. Accordingly, the
composition between ProcessArea and BusinessProcess is 1 to (0..n).

The stereotype BusinessCategory and the combination of the stereotypes BusinessArea and ProcessArea
are considered as alternatives. A UMM model must not use both alternatives.

5.1.2 Stereotypes and Tag Definitions (normative)

cd BusinessDomainView - Abstract Syntax

BusinessPartnerType

Actor
Stakeholder

Package
RegistryObject

Management::
BusinessLibrary

+ baseURN: String
+ copyright: String [0..*]
+ owner: String [0..*]
+ reference: String [0..*] UseCase

BusinessProcess

+ interest: String

Dependency
isOfInterestTo

+ interest: String

Association
participates

+ interest: String

+ actions: String [1..*]
+ purpose: String

ProcessArea BusinessArea

Package
BusinessCategory

+ businessOpportunity: String
+ objective: String
+ scope: String

374
375

Figure 8 BusinessDomainView Abstract Syntax

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 16

376
Stereotype BusinessCategory

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

Business categories are used to classify the business processes in the Business Domain View. The prime
purpose of classifying the business processes is to enable potential users to readily identify processes that
have been defined in the business category under consideration.

Description Consequently a business category is used to group either other business categories or business processes
that belong to the respective business category. The Business Domain View is structured either by this
stereotype BusinessCategory or by its specializations BusinessArea and Process Area (see below for these
stereotype definitions).

Tag Definition

objective

Type String

Multiplicity 1

Description The purpose to be achieved by the business process within the business category
under consideration.

scope

Type String

Multiplicity 1

Description Defines the boundaries of the business category under consideration.

businessOpportunity

Type String

Multiplicity 1

Description The strategic interest from a business perspective in order to address the business
category under consideration.

Inherited tagged values:
− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 377

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 17

378
Stereotype BusinessArea

Base Class Package

Parent BusinessCategory

A business area usually corresponds to a division of an enterprise. Business areas might be structured
recursively. A business area (in case of a recursive structure only a business area on the lowest level) is a
category of decomposable business process areas. This means a business area collates either other business
areas or process areas.

Description The UMM does not mandate a specific classification schema. A classification schema that might be used is
the Porter Value Chain. Based on the Porter Value Chain the UN/CEFACT Common Business Process
Catalog recommends a list of eight flat (i.e. non-recursive) categories: Procurement/Sales, Design,
Manufacture, Logistics, Recruitment/Training, Financial Services, Regulation, Health Care. This list of
business areas is considered as non exhaustive.

Tag Definition

Inherited tagged values:
− objective
− scope
− businessOpportunity
− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 379
Stereotype ProcessArea

Base Class Package

Parent BusinessCategory

A process area corresponds to a set of common operations within a business area. Process areas might be
structured recursively. A process area (in case of a recursive structure only a process area on the lowest
level) is a category of common business processes. This means a process area collates either other process
areas or business processes.

Description
The UMM does not mandate a specific classification schema. The UN/CEFACT Common Business
Process Catalog recommends a list of five flat (i.e. non-recursive) categories that correspond to the five
successive phases of business collaborations as defined by the ISO Open-edi model: Planning,
Identification, Negotiation, Actualization, Post-Actualization.

Tag Definition

Inherited tagged values:
− objective
− scope
− businessOpportunity
− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm

 380

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 18

381
Stereotype Stakeholder

Base Class Actor

Parent N/A

A stakeholder is a person or representative of an organization who has a stake – a vested interest – in a
certain business category or in the outcome of a business process. A stakeholder does not necessarily
participate in the execution of a business process.

Description

interest

Tag Definition

Type String

Multiplicity 1

Description Describes the vested interest of the stakeholder in the business category it is defined
within.

 382
Stereotype BusinessPartnerType

Base Class Actor

Parent Stakeholder

A business partner type is an organization type, an organizational unit type or a person type that
participates in a business process. Business partner types typically provide input to and/or receive output
from a business process. Due to the fact that a business partner type participates in a business process she
or he has by default a vested interest in the business process. It follows that a business partner type is a
special kind of stakeholder.

Description

Inherited tagged values:
Tag Definition

- interest

 383
Stereotype BusinessProcess

Base Class UseCase

Parent N/A

Description

A business process is a set of related activities that together create value for a business partner. A business
process might be performed by a single business partner type or by multiple business partner types
crossing organizational boundaries. In case organizations collaborate in a business process, the business
process should create value for all its participants. A business process can be decomposed into sub-
processes using the «include» and «extends» association stereotypes defined in UML.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 19

384
definition

Tag Definition

Type String

Multiplicity 1

Description Gives a definition of the business process. This definition must describe the
customer value to be created by the business process. In case of a business process
executed by multiple paries it describes the value to be created to all participants.

beginsWhen

Type String

Multiplicity 1

Description Specifies a business event that triggers the initiation of the business process.

preCondition

Type String

Multiplicity 1

Description Specifies conditions that have to be fulfilled in order to execute a business process.
This condition SHOULD refer to states in a business entity life cycle. A pre-
condition statement MAY use Boolean operators specifying a combination of
multiple business entity states.

endsWhen

Type String

Multiplicity 1

Description Specifies a business event that leads to the termination of the business process.

postCondition

Type String

Multiplicity 1

Description Specifies a condition that will be reached after executing the business process.
Usually, this condition SHOULD refer to states in a business entity life cycle. A
post-condition statement MAY use Boolean operators specifying a combination of
multiple business entity states.

exceptions

Type String

Multiplicity 1..*

Description Identifies situations leading to a deviation of the regular execution of the business
process.

actions

Type String

Multiplicity 1..*

Description Lists the tasks that together make up a business process. In case of a business
process executed by multiple parties a special emphasis on interface tasks is needed.
An interface task is a business process step that requires communication with
another business partner type.

 385
Stereotype participates

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 20

Base Class Association

Parent N/A

Describes the association between a business partner type and a business process. This stereotype defines
that the business partner type provides input to and/or output from the associated business process. Description

interest

Tag Definition
Type String

Multiplicity 1

Description Describes the vested interest of the business partner type in the business process
associated by this participates-association.

 386
Stereotype isOfInterestTo

Base Class Dependency

Parent N/A

Describes a dependency from a business process to a stakeholder. This stereotype defines that a business
process depends on the interest of the connected stakeholder. Description

interest

Tag Definition
Type String

Multiplicity 1

Description Describes the vested interest of the stakeholder in the business process linked by this
participates-dependency.

 387

388

389

5.1.3 Constraints (normative)

The BusinessDomainView package MUST include at least one BusinessCategory package or at least one BusinessArea
package. Furthermore the BusinessDomainView may contain Stakeholders and BusinessPartnerTypes. The
BusinessDomainView MUST NOT include a combination of BusinessCategory and BusinessArea packages.

package Model_Management
context Package

inv isBusinessDomainViewPackage:
 self.isBusinessDomainView() implies
 self.contents->notEmpty() and (
 self.contents->forAll(isJustBusinessCategory() or
 isStakeholderOrBusinessPartnerType()) or
 self.contents->forAll(isBusinessArea() or
 isStakeholderOrBusinessPartnerType()))

 390

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 21

391

A BusinessArea package MUST include one or more BusinessArea packages or one or more ProcessArea packages. It MUST
NOT include combinations of BusinessArea and ProcessArea packages. It MAY contain BusinessPartnerTypes and
Stakeholders.

package Model_Management
context Package

inv contentsOfBusinessArea:
 self.isBusinessArea() implies
 self.contents->notEmpty() and (
 self.contents->forAll(isProcessArea()
 or isStakeholderOrBusinessPartnerType())
 or self.contents->forAll(isBusinessArea() or
 isStakeholderOrBusinessPartnerType()))

 392

Either a ProcessArea contains one or more other ProcessAreas and zero or more BusinessPartnerTypes and Stakeholders or
it MUST contain at least one BusinessProcess and MAY include BusinessPartnerTypes, Stakeholders and well as stereotyped
associations participates and stereotyped dependencies isOfInterestTo.

package Model_Management
context Package

inv contentsOfProcessArea:
 self.isProcessArea() implies
 self.contents->notEmpty and
 (self.contents->forAll(isProcessArea() or
 isStakeholderOrBusinessPartnerType()) or
 (self.contents->forAll(isBusinessProcess() or isBusinessPartnerType() or
 isStakeholder() or isParticipates() or isIsOfInterestTo()) and
 self.contents->select(isBusinessProcess())->size()>= 1))

 393

Either a BusinessCategory contains one or more BusinessCategories and zero or more BusinessPartnerTypes and
Stakeholders or it MUST contain at least one BusinessProcess and MAY include BusinessPartnerTypes, Stakeholders as well
as stereotyped associations participates and stereotyped dependencies isOfInterestTo.

package Model_Management
context Package

inv contentsOfBusinessCategory:
 self.isBusinessCategory() implies
 self.contents->notEmpty and
 (self.contents->forAll(isBusinessCategory() or
 isStakeholderOrBusinessPartnerType()) or
 (self.contents->forAll(isBusinessProcess()
 or isBusinessPartnerType() or
 isStakeholder() or isParticipates() or isIsOfInterestTo()) and
 self.contents->select(isBusinessProcess())->size()>= 1))

 394

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 22

A participates association that is part of a BusinessCategory (or its specialization ProcessArea) MUST always connect a
BusinessPartnerType and a BusinessProcess.

package Foundation::Core
context Association

inv isParticipatesConnector:
 (self.isParticipates() and self.namespace.isBusinessCategory())implies
 self.allConnections->size() = 2 and
 self.allConnections->one(isBusinessProcess()) and
 self.allConnections->one(isBusinessPartnerType())

 395

An isOfInterestTo dependency MUST always be established from a BusinessProcess to a Stakeholder.

package Foundation::Core
context Dependency

inv isIsOfInterestTo:
 self.isIsOfInterestTo() implies
 self.client->one(isBusinessProcess()) and
 self.supplier->one(isStakeholder()) and
 self.client->size() = 1 and
 self.supplier->size() = 1

 396

397 5.1.4 Example (informative)
ud Negotiation

«BusinessProcess»
Request Price

«BusinessProcess»
Quote Products

«BusinessProcess»
Place Purchase

Order

«BusinessProcess»
Process Purchase

Orders

Tax Agency

(from Order From Quote)

Selling Organization

(from Order From Quote)

Purchasing
Organization

(from Order From Quote)

«isOfInterestTo»

«participates»

«participates»«participates»

«participates»

 398
399 Figure 9 BusinessDomainView Example: Negotiation (Order from Quote)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 23

5.1.5 OCL methods used in all packages of the BDV (normative) 400

401

OCL-Methods

package Foundation::Core
context ModelElement

-- checks if a model element has a certain stereotype
def:
let hasStereotype (st : String) : Boolean =
 self.stereotype->select(self.name = st)->notEmpty()

-- checks if a Package is stereotyped as
-- BusinessDomainView
def:
let isBusinessDomainView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessDomainView')

-- checks if a Package is a BusinessCategory. This includes
-- also BusinessAreas and ProcessAreas due to the inheritance hierachy
-- in the metamodel
def :
let isBusinessCategory() : Boolean =
 self.oclIsKindOf(Package) and (
 self.hasStereotype('BusinessCategory') or
 isBusinessArea() or
 isProcessArea()
)

-- checks if an Association is stereotyped as participates
def:
let isParticipates() : Boolean =
 self.oclIsKindOf(Association) and
 self.hasStereotype('participates')

-- checks if an Association is stereotyped as isInterestOf
def:
let isIsOfInterestTo() : Boolean =
 self.oclIsKindOf(Dependency) and
 self.hasStereotype('isOfInterestTo')

-- checks if a package is a ProcessArea
def:
let isProcessArea() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('ProcessArea')

-- checks if a package is a BusinessArea
def:
let isBusinessArea() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessArea')

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 24

-- checks if an Actor is a BusinessPartnerType
def :
let isBusinessPartnerType() : Boolean =
 self.oclIsTypeOf(Actor) and
 self.hasStereotype('BusinessPartnerType')

-- checks if an Actor is a Stakeholder
def :
let isStakeholder() : Boolean =
 self.oclIsTypeOf(Actor) and (
 self.hasStereotype('Stakeholder') or
 isBusinessPartnerType()
)

--checks if an Actor is a BusinessPartnerType or a Stakeholder
def :
let isStakeholderOrBusinessPartnerType() : Boolean =
 self.isStakeholder() or self.isBusinessPartnerType()

-- checks if a UseCase is stereotyped as BusinessProcess
def :
let isBusinessProcess() : Boolean =
 self.oclIsTypeOf(UseCase) and
 self.hasStereotype('BusinessProcess')

 402

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 25

5.2 Business Requirements View 403

404

405

406

5.2.0 Sub-Views in the Requirements View

5.2.0.1 Conceptual Description (informative)

cd BusinessRequirementsView - Conceptual

BusinessRequirementsView

BusinessProcessView BusinessEntityView PartnershipRequirementsView

CollaborationRequirementsView TransactionRequirementsView CollaborationRealizationView

1..*1..*1..*

0..*0..*

 407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Figure 10 BusinessRequirementsView Conceptual Overview

The business requirements view is the second out of the 3 views of a UMM compliant business
collaboration model. The goal of the BRV is to identify collaborative business processes between
different business partner types and to describe the requirements regarding these collaborative business
processes. The BusinessRequirementsView packages serves a container for three different artifacts that
help to capture the requirements of a collaborative business process:

A business process view describes the flow of activities and states of business processes discovered
before in the business domain view. A business process view is not mandatory, but a business
requirements view may consist of multiple business process views. Thus, the BusinessRequirementsView
is composed of zero to many BusinessProcessViews. A business entity view describes the life cycles of
business entities that are manipulated in a collaborative business process. The business entity view is also
an optional part that may be repeated. Thus, the BusinessRequirementsView is composed of zero to many
BusinessEntityViews.

Finally, the business requirements view covers the partnership requirements view describing the
requirements on a partnership between business partner types. A partnership on the lowest level of
granularity is a business transaction (see further below). Business collaborations are partnerships that are
built by business transactions and/or other business collaborations. Accordingly, a transaction

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 26

427
428
429
430
431
432
433
434
435
436
437

438

439

requirement view describes the requirements of a business transaction and a collaboration requirements
view describes the requirements of a business collaboration. The same business collaboration may be
executed between multiple different sets of business partner types. A collaboration realization view
describes the requirements of a realization of a business collaboration use case for a specific set of
business partner types. A PartnershipRequirementsView is an abstract concept that is either realized by a
TransactionRequirementsView, a CollaborationRequirementsView, or a CollaborationRealizationView.
The goal of a project (for which a model is developed) is to describe at least one business collaboration
and a business collaboration consists of at least one business transaction. At least one of the business
collaborations must be executed by a set of business partner types. It follows that the
BusinessRequirementsView is composed of one to many CollaborationRequirementsViews, of one or
many TransactionRequirementsViews, and of one to many CollaborationRealizationViews.

5.2.0.2 Stereotypes and Tag Definitions (normative)

cd BusinessRequirementsView - Abstract Syntax

Package
BusinessProcessView

Package
BusinessEntityView

CollaborationRequirementsView

Package
PartnershipRequirementsView

TransactionRequirementsView

Package
RegistryObject

BusinessLibraryPackage

+ copyright: String [0..*]
+ owner: String [0..*]
+ reference: String [0..*]

CollaborationRealizationView

440
441
442

Figure 11 BusinessRequirementsView Abstract Syntax

Stereotype BusinessProcessView

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

The business process view is a container for elements describing the behavior of an internal business
process of a business partner type or the behavior of a business process that connects the internal processes
of business partner types.

Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 27

443
Stereotype BusinessEntityView

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

The business entity view is a container to describe a business entity having business significance in the
modelled domain including its business entity lifecycle and business entity states. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 444
Stereotype PartnershipRequirementsView (abstract)

Base Class Package

Parent BusinessLibraryPackage (from Base Module)

The partnership requirements view is a container for all elements describing the requirements on a
partnership between business partner types. These requirements do either apply to a business collaboration,
a business transaction or the realization of a business collaboration. Due to this fact the partnership
requirements view is spit into three specializations the collaboration requirements view, the transaction
requirements view, and the collaboration realization view. Since the partnership requirements view is an
abstract stereotype one of its specializations must be used.

Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 445
Stereotype CollaborationRequirementsView

Base Class Package

Parent PartnershipRequirementsView

The collaboration requirements view is a container for all elements describing the requirements on a
business collaboration between authorized roles. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 446

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 28

447
Stereotype TransactionRequirementsView

Base Class Package

Parent PartnershipRequirementsView

The transaction requirements view is a container for all elements describing the requirements on a business
transaction between authorized roles. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 448
Stereotype CollaborationRealizationView

Base Class Package

Parent PartnershipRequirementsView

The collaboration realization view is a container for all elements describing the requirements on a
realization of a business collaboration use case by business partner types. Description

Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 449

450 5.2.0.3 Constraints (normative)

A BusinessRequirementsView MUST contain at least one CollaborationRequirementsView package. It MUST contain at least
one TransactionRequirementsView package. It MUST contain at least one CollaborationRealizationView. It MAY contain
BusinessProcessView packages and BusinessEntityView packages. It MUST NOT contain any other elements.

package Model_Management
context Package

inv packagesAllowedInBRV:
 self.isBusinessRequirementsView() implies
 self.contents->forAll(isBusinessProcessView() or
 isBusinessEntityView() or
 isCollaborationRequirementsView() or
 isTransactionRequirementsView() or
 isCollaborationRealizationView()) and
 self.contents->exists(isCollaborationRequirementsView) and
 self.contents->exists(isTransactionRequirementsView) and
 self.contents->exists(isCollaborationRealizationView)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 29

451

452

453

5.2.1 Business Process View

5.2.1.1 Conceptual Description (informative)
cd BusinessProcessView - Conceptual

BusinessProcess

BusinessProcessActivity

BusinessProcessActivityModel

InternalBusinessEntityState

SharedBusinessEntityState

Partition

{XOR}

BusinessPartnerType

{XOR}

BusinessProcessView

0..*

0..1

0..1

+behavior 0..1

+context 0..1

0..*

1

0..*

1..* 1..*

1..*

0..*

0..1

0..*

1

0..*

 454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

Figure 12 BusinessProcessView (BusinessRequirementsView) Conceptual Overview

The business process view gives an overview about the business processes, their activities and the
business partner types that execute these activities. A business process view package includes one or
more business processes. If more than one business process is included, the business processes should
relate to each other. Accordingly, the BusinessProcessView is composed of one to many
BusinessProcesses. Business Processes might include or extend other business processes. This is denoted
by the unary composition assigned to BusinessProcess.

The business process activity model represents the dynamic behavior of a business process. It depends on
the relevance of a business process whether its flow is described by a business process activity model or
not. Thus, a BusinessProcess is composed of 0 or 1 BusinessProcessActivityModel. A business process
activity model describes a flow of activities performed by one participant or even by more participants. If
two or more business partner types collaborate, a business process activity model is divided into partitions
– one for each business partner type. In case of an internal business process, which is executed by one
partner only, a single partition for that partner is optional. Consequently, a BusinessProcessActivityModel

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 30

is composed of zero or more Partitions (UML standard element). A partition is assigned to one business
partner type, a business partner type is assigned to one partition in one activity model. However, a
business partner type may be assigned to multiple partitions – each one in a different activity model.
Hence, there is a 1 to (0..n) association between BusinessPartnerType and Partition.

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

502

A business process activity model is described as a flow of business process activities. In case that no
partition is used, the business process activities are directly included in the business process activity
model. In case of partitions, a business process activity is assigned to the partition of the business partner
type executing the activity. The need for a collaborative business process is identified whenever a
transition connecting two business process activities crosses between partitions. It follows, that either a
BusinessProcessActivityModel is composed of one or more BusinessProcessActivities or a Partition
(which is part of a business process activity model) is composed of one or more
BusinessProcessActivities. A business process activity might be refined by another business process
activity model. Thus a BusinessProcessActivity is composed of zero or one
BusinessProcessActivityModels which in turn is a composite of zero or one BusinessProcessActivity.

A business process activity model may also denote important states of business entities that are
manipulated during the execution of a business process. A business entity state is the output from one
business activity and input to another business activity. There is a transition from a business process
activity to a business entity state signaling an output as well as a transition from a business entity state to
a business process activity signaling an input. Some business entity states are meaningful to one business
partner type only. These are internal business entity states. Business entity states that must be
communicated to a business partner type are shared business entity states. A business process activity
model may include both internal and shared business entity states. Hence, a BusinessProcessActivity
model is composed of zero to many InternalBusinessEntityStates and of zero to many
SharedBusinessEntityStates. If a business process activity model uses partititions, the two business
process activities creating and consuming an internal business entity state are in the same partition. In
contrast, the two business process activities creating and consuming a shared business entity state are in
different partitions.A shared business entity state signals the need for a collaborative business process.

5.2.1.2 Stereotypes and Tag Definitions (normative)

cd BusinessProcessView - Abstract Syntax

ActivityGraph
BusinessProcessActivityModel

State
BusinessProcessActivity

ObjectFlowState
InternalBusinessEntityState

ObjectFlowState
SharedBusinessEntityState

 503
504 Figure 13 BusinessProcessView (BusinessRequirementsView) Abstract Syntax

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 31

505
Stereotype BusinessProcessActivityModel

Base Class ActivityGraph

Parent N/A

The BusinessProcessActivityModel describes the behavior of the business processes of the involved
BusinessPartnerTypes. It is a tool to identify requirements to collaborate between two or more
BusinessPartnerTypes. A BusinessProcessActivityModel is linked to a BusinessProcess identified in the
BusinessDomainView and describes the dynamic behavior of that BusinessProcess.

Description

No tagged values. Tag Definition

506
Stereotype BusinessProcessActivity

Base Class State

Parent N/A

A business process activity corresponds to a step in the execution of a business process activity model. A
business activity might be refined by another business process activity model. Thus, the UML base class of
business process activity is not an atomic action state, but a state – which is a generalization of action state
and composite state.

Description

No tagged values. Tag Definition

507
Stereotype InternalBusinessEntityState

Base Class ObjectFlowState

Parent N/A

The InternalBusinessEntityState represents a state of a BusinessEntity that is internal to the business
process of a certain BusinessPartnerType. Description

No tagged values. Tag Definition

508
Stereotype SharedBusinessEntityState

Base Class ObjectFlowState

Parent N/A

The SharedlBusinessEntityState represents a state of a BusinessEntity that is shared between the business
processes of two involved BusinessPartnerTypes. Description

No tagged values. Tag Definition

509

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 32

510

511

5.2.1.3 Constraints (normative)

The BusinessProcessView MUST contain nothing else, but BusinessProcessActivityModels, BusinessPartnerTypes and
BusinessProcesses and it must be empty

package Model_Management
context Package

inv AllowedElementsInBusinessProcessView:
 self.isBusinessProcessView() implies
 self.contents->forAll(isBusinessProcessActivityModel() or
 isBusinessPartnerType() or
 isBusinessProcess()) and
 self.contents->notEmpty()

 512

A BusinessProcessActivityModel, which has no partitions, MUST contain one or more BusinessProcessActivities and MAY
contain InternalBusinessEntityStates, SharedBusinessEntityStates, pseudo states, final states and transitions

package Behavioral_Elements::State_Machines
context CompositeState

inv AllowedElementsInBusinessProcessActivityModelWithoutPartition:
 (self.stateMachine.isBusinessProcessActivityModel() and
 self.stateMachine.oclAsType(ActivityGraph).partition->isEmpty()) implies
 self.subvertex->notEmpty() and
 self.subvertex->exists(isBusinessProcessActivity()) and
 self.subvertex->forAll(isBusinessProcessActivity() or
 isInternalBusinessEntityState() or
 isSharedBusinessEntityState() or
 isPseudoStateOrFinalStateOrTransition())

 513

A partition in a BusinessProcessActivityModel MUST contain one or more BusinessProcessActivities and MAY contain
InternalBusinessEntityStates, PseudoStates, FinalStates and Transitions

package Behavioral_Elements::Activity_Graphs
context Partition

inv AllowedModelElementsInBusinessProcessActivityModelPartition:
self.isPartition() implies
 self.contents->forAll(isBusinessProcessActivity()
 or isInternalBusinessEntityState()
 or isPseudoStateOrFinalStateOrTransition()
) and
 self.contents->exists(isBusinessProcessActivity())

 514

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 33

515 5.2.1.4 Example (informative)
ad Purchase Product - Collaborativ e View

:Selling Organization:Purchasing Organization

«BusinessProcessActivity»
Request Price Quote

«SharedBusinessEntityState»
:Quote

[requested]

«BusinessProcessActivity»
Process Request

For Quote

«InternalBusinessEntityState»
:Quote

[processed]

«BusinessProcessActivity»
Inform about no

Quote

«SharedBusinessEntityState»
:Quote

[refused]

«BusinessProcessActivity»
Prov ide Quote

«SharedBusinessEntityState»
:Quote

[provided]

Failure

«BusinessProcessActivity»
Ev aluate Quote

Failure

«BusinessProcessActivity»
Place Purchase

Order

«SharedBusinessEntityState»
:Order

[submitted]

«BusinessProcessActivity»
Process Order

«BusinessProcessActivity»
Reject Order

«BusinessProcessActivity»
Confirm Order

«SharedBusinessEntityState»
:Order

[rejected]

«SharedBusinessEntityState»
:Order

[accepted]

«BusinessProcessActivity»
File Order

Failure

Success

«BusinessProcessActivity»
Flag for Deletion

[Quote unacceptable]

[Quote acceptable]

[Order unacceptable]

[No Quote possible]

[able to quote]

[Order acceptable]

 516
517
518

Figure 14 BusinessProcessView (BusinessRequirementsView) Example: Purchase Product – Collaborative View
BusinessProcessActivityModel (ActivityGraph)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 34

5.2.2 Business Entity View 519

520 5.2.2.1 Conceptual Description (informative)

class BusinessEntityView - Conceptual

BusinessEntityLifecycleBusinessEntityState

BusinessEntityView BusinessEntity

1..*

+behavior 0..1

+context

1..*

 521
522
523
524
525
526
527
528
529
530
531
532
533
534

535

Figure 15 BusinessEntityView (BusinessRequirementsView) Conceptual Overview

A business entity is a real-world thing having business significance that is shared among two or more
business partner types in a collaborative business process (e.g. “order”, “account”, etc.). Within the
business domain view at least one, but possibly more business entities are described. Thus, the
BusinessEntityView is composed of one to many BusinessEntities. It depends on the importance of the
business entity lifecycle, whether its life cycle is included or not. Hence, a BusinessEntity is composed of
zero to one BusinessEntityLifecycles. A business entity lifecycle represents the different business entity
states a business entity can exist in. A business entity lifecycle consist of at least one business entity state.
Inasmuch, the BusinessEntityLifecycle is composed of one or more BusinessEntityStates. Like any other
UML state machine the business entity life cycle includes events and transitions including optional guards
that lead from one business entity state to another one.

5.2.2.2 Stereotypes and Tag Definitions (normative)

class BusinessEntityView - Abstract Syntax

Class
BusinessEntity

State
BusinessEntityState

StateMachine
BusinessEntityLifecycle

BusinessLibraryPackage
Package

BusinessEntityView

 536
537 Figure 16 BusinessEntityView (BusinessRequirementsView) Abstract Syntax

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 35

538
Stereotype BusinessEntity

Base Class Class

Parent N/A

A business entity is a real-world thing having business significance that is shared among two or more
business partner types in a collaborative business process (e.g. order, account, etc.). Description

No tagged values. Tag Definition

539
Stereotype BusinessEntityLifecycle

Base Class StateMachine

Parent N/A

A business entity lifecycle represents the different business entity states a business entity can exist in and
the events and transitions that lead from one business entity state to another business entity state of the
same business entity.

Description

No tagged values. Tag Definition

540
Stereotype BusinessEntityState

Base Class State

Parent N/A

A business entity state represents a certain state a business entity can exists in during its lifecycle (an
“order” can exist in the states “issued”, “rejected”, “confirmed”, etc.) Description

No tagged values. Tag Definition

541

542

543

5.2.2.3 Constraints (normative)

The BusinessEntityView MUST contain nothing else than BusinessEntities

package Model_Management
context Package

inv AllowedElementsInBusinessEntityView:
 self.isBusinessEntityView() implies
 self.contents->notEmpty() and
 self.contents->forAll(isBusinessEntity())

 544

A BusinessEntity has zero or one BusinessEntityLifecycle that expresses its behavior

package Foundation::Core
context Class

inv LifecyclesOfBusinessEntity:
 self.isBusinessEntity() implies
 self.behavior->select(isBusinessEntityLifecycle())->size()<=1

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 36

545

A BusinessEntityLifecycle MUST only contain BusinessEntityStates, PseudoStates, FinalStates or Transitions

package Behavioral_Elements::State_Machines
context CompositeState

inv ContainsOnlyBusinessEntityStates:
 self.stateMachine.isBusinessEntityLifecycle() implies
 self.subvertex->forAll(isBusinessEntityState() or
 isPseudoStateOrFinalStateOrTransition())
 and self.subvertex->exists(isBusinessEntityState())

 546

547 5.2.2.4 Example (informative)

cd BusinessEntities Quote and Order

«BusinessEntity»
Order

«BusinessEntity»
Quote

 548
549 Figure 17 BusinessEntityView (BusinessRequirementsView) Example: BusinessEntities Quote and Order (ClassDiagram)

sm Quote

«BusinessEntityState»
requested

«BusinessEntityState»
prov ided

«BusinessEntityState»
refused

«BusinessEntityState»
processed

 550
551 Figure 18 BusinessEntityView (BusinessRequirementsView) Example: Quote BusinessEntityLifecycle (State Machine)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 37

sm Order

«BusinessEntityState»
submitted

«BusinessEntityState»
accepted

«BusinessEntityState»
rejected

 552
553 Figure 19 BusinessEntityView (BusinessRequirementsView) Example: Order BusinessEntityLifecycle (StateMachine)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 38

5.2.3 Partnership Requirements View 554

555 5.2.3.1 Conceptual Description (informative)
cd PartnershipRequirementsView - Conceptual

BusinessCollaborationUseCase

BusinessTransactionUseCase

BusinessDomainView::
BusinessPartner

AuthorizedRole

TransactionRequirementsViewCollaborationRequirementsView

PartnershipRequirementsView

CollaborationRealizationView

BusinessCollaborationRealization

2...*

1
+participates

1

2..*

0..*

includes

0..*

1

0..*includes

1..*

+participates

1

2

1

1..*

mapsTo

1..*

0..*

realizes

1

2

2...*

1

0..1

mapsTo

0..*

 556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

Figure 20 CollaborationRequirementsView (BusinessRequirementsView) Conceptual Overview

The previous views helped to identify the need for a collaboration. The business partnership view
describes the requirements of an identified collaboration between business partner types by the means of
use cases. In this use case analysis we distinguish between business collaboration use cases, business
transaction use cases, and business collaboration realizations. A business transaction use case describes
the requirements of a transaction that is a special interaction between two authorized roles that is limited
to an initiating information exchange and an optional response. A business collaboration use case
describes the requirements of a business collaboration that is executed between two or more authorized
roles, and that is composed of one or more business transactions or nested business collaborations. A
business collaboration use case must be executed by a set of business partner types. Different sets of
business partner types may realize the same business collaboration use case. A business collaboration
realization is a realization of a business collaboration by a specific set of business partner types.

A partnership requirements view is an abstract concept. It is either a collaboration requirements view to
capturing the requirements of a business collaboration, a transaction requirements view capturing the

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 39

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

requirements of a business transaction, or a collaboration realization view capturing the requirements of a
business collaboration realization. Thus, the CollaborationRequirementsView, the
TransactionRequirementsView, and the CollaborationRealizationView are specializations of the abstract
PartnershipRequirementsView.

Each business collaboration use case is defined in its own collaboration requirements view. Accordingly,
the CollaborationRequirementsView is composed of exactly one BusinessCollaborationUseCase. Two or
more authorized roles participate in a business collaboration use case. These authorized roles (e.g. seller,
payee) must be defined in the same collaboration requirements view package as the corresponding
business collaboration use case. Accordingly, a CollaborationRequirementsView is composed of two or
more AuthorizedRoles. This means, if a certain role (e.g. seller, payee) participates in multiple business
collaborations, it requires a different authorized role for each business collaboration use case. Each
authorized role of the same role is in a different namespace of a corresponding collaboration requirements
view. Therefore, an authorized role participates in only one business collaboration use case– it is the one
in the same collaboration requirements view. Accordingly, BusinessCollaborationUseCase and
AuthorizedRole are related by an 1 to (2..n) association. It is important, that the same authorized role must
not be associated twice or more times to the same business collaboration use case.

Each business transaction use case is defined in its own transaction requirements view. Accordingly, the
TransactionRequirementsView is composed of exactly one BusinessTransactionUseCase. Two authorized
roles participate in a business transaction use case. These authorized roles (e.g. seller, payee) must be
defined in the same transaction requirements view package as the corresponding business transaction use
case. Accordingly, a TransactionRequirementsView is composed of exactly two AuthorizedRoles. . This
means, if a certain role (e.g. seller, payee) participates in multiple business transactions, it requires a
different authorized role for each business collaboration use case. Each authorized role of the same role is
in a different namespace of a corresponding transaction requirements view. Therefore, an authorized role
participates in only one business transaction use case– it is the one in the same transaction requirements
view. Accordingly, BusinessTransactionUseCase and AuthorizedRole are related by an 1 to 2 association.
It is important to note, that the same authorized role is not associated twice to the same business
transaction use case.

A business collaboration use case may include nested business collaboration use cases. A business
collaboration use case may be optionally nested in multiple parent business collaboration use cases.
Hence, BusinesCollaborationUseCase has a unary (0..n) to (0..n) include-composition. A business
collaboration use case may include multiple business transaction use cases. A business transaction use
case must be included in at least one business collaboration use case. Consequently, an (1..n) to (0..n)
aggregation between BusinessCollaborationUseCase and BusinessTransactionUseCase exists. It is
important that a business collaboration use case includes at minimum one use case – no matter whether
this is a nested business collaboration use case or a business transaction use case. A hierarchy of business
collaboration use cases built by include-compositions must not include any cycles. A business transaction
uses case cannot be further decomposed by an include-association. UMM does not use any extend-
associations between business collaboration/transaction use cases.

For each include-relationship either between a business collaboration use case and a business transaction
use case or between two collaboration use cases, a mapping of the authorized role of the source use case
to the authorized roles of the target use case is necessary. Accordingly, the AuthorizedRole has a unary
mapsTo-relationship of (1..n) to (1..n). It is required that each authorized role of the target use case is the
target of a mapping from an authorized role of the source use case. Each authorized role of the source use
case may be mapped maximal once to an authorized role of the same target use case, but it may be
mapped to different authorized roles of different target use cases.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 40

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

Business partner types identified in the previous UMM steps must not directly be associated with the
business collaboration use cases and business transaction use cases. In order to specify that a specific set
of business partner types collaborate, we use the concept of a business collaboration realization.Each
business collaboration realization is defined in its own collaboration realization view. Accordingly, the
CollaborationRealizationView is composed of exactly one BusinessCollaborationRealization. A business
collaboration realization realizes exactly one business collaboration use case. Each business collaboration
use case may be realized by multiple business collaboration realizations. Not each business collaboration
use case (e.g. one that is nested within another one) needs to have a corresponding business collaboration
realization. As a consequence, the realize-association between a BusinessCollaborationUseCase and
BusinessCollaborationRealization is a 1 to (0..n).

Two or more authorized roles participate in a business collaboration realization. These authorized roles
(e.g. seller, payee) must be defined in the same collaboration realization view package as the
corresponding business collaboration realization. Accordingly, a CollaborationRealizationView is
composed of two or more AuthorizedRoles. Usually, the names of the authorized roles participating in the
business collaboration use case (e.g. payer and payee) will be the names of the authorized roles in the
business collaboration realization (e.g. payer and payee) realizing it. However, the authorized roles
participating in the business collaboration use case and in the business collaboration realization will be
defined in different namespaces – each in the package of the corresponding view. Similar to the
BusinessCollaborationUseCase, the BusinessCollaborationRealization and AuthorizedRole are related by
an 1 to (2..n) association. Furthermore, the number of actors participating in a business collaborations use
case must be the same as the number of actors participating in the business collaboration realization
realizing it.

In order to bind a business collaboration realization to the business partner types executing it, business
partner types are mapped to the authorized roles participating in the business collaboration realization. It
is required that each authorized role of a business collaboration realization (but not an authorized role in
general) is target of exactly one mapsTo-association from a business partner type. A business partner type
may play multiple authorized roles of a business collaboration realization. Consequently, there is a (0..1)
to (0..n) mapsTo-association between BusinessPartnerType and AuthorizedRole.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 41

655 5.2.3.2 Stereotypes and Tag Definitions (normative)

cd PartnershipRequirementsView - Abstract Syntax

BusinessLibraryPackage
Package

PartnershipRequirementsView

UseCase
BusinessDomainView::

BusinessProcess

+ actions: String [1..*]
+ purpose: String

BusinessCollaborationUseCase BusinessTransactionUseCase

Actor
AuthorizedRole

Dependency
mapsTo

TransactionRequirementsViewCollaborationRequirementsView

UseCase
BusinessCollaborationRealization

CollaborationRealizationView

656
657
658

Figure 21 CollaborationRequirementsView (BusinessRequirementsView) Abstract Syntax

Stereotype BusinessCollaborationUseCase

Base Class UseCase

Parent BusinessProcess

A business collaboration use case describes in detail the requirements on a collaboration between two or
more involved partners. Business partner types take part in a business collaboration use case by playing an
authorized role in it. A business collaboration use case can be broken down into further business
collaboration use cases and business transaction use cases.

Description

Inherited tagged values:

Tag Definition

- definition
- beginsWhen
- preCondition
- endsWhen
- postCondition
- exceptions
- actions

 659

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 42

660
Stereotype BusinessTransactionUseCase

Base Class UseCase

Parent BusinessProcess

A business transaction use case describes in detail the requirements on a collaboration between exactly two
involved partners. A business transaction use case can not be further refined and describes the
requirements on a one-way or two-way information exchange. Business partner types take part in a
business transaction use case by playing an authorized role in it.

Description

Inherited tagged values:

Tag Definition

- definition
- beginsWhen
- preCondition
- endsWhen
- postCondition
- exceptions
- actions

 661
Stereotype BusinessCollaborationRealization

Base Class Collaboration

Parent N/A

A business collaboration realization realizes a business collaboration use case between a specific set of
business partner types. The requirements of the business collaboration realization are the ones defined in
the tags of the corresponding business collaboration use case. Thus, the business collaboration realization
does not include any tag definitions for capturing requirements.

Description

Tag Definition No tagged values

662
Stereotype AuthorizedRole

Base Class Actor

Parent N/A

An authorized role (e.g. a “buyer”) is a concept which is more generic than a business partner type (e.g. a
“broker”) and allows the reuse of collaborations by mapping an AuthorizedRole to a business partner type
within a given scenario. Since business collaboration use case and business transaction use case are defined
as occurring between authorized roles, they might be reused by different business partner types (a “broker”
or a “custodian”) in different scenarios of the same domain or even in different domains.

Description

No tagged values. Tag Definition

663
Stereotype mapsTo

Base Class Dependency

Parent N/A

A maps to dependency represents (1) the fact, that a business partner type plays a certain authorized role in
a business collaboration realization and (2) the fact, that an authorized role of a source business
collaboration use case takes on a certain authorized role in a target business transaction use case or
business collaboration use case.

Description

No tagged values. Tag Definition

664

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 43

665

666

5.2.3.3 Constraints (normative)

The CollaborationRequirementsView MUST contain exactly one BusinessCollaborationUseCase, at least two
AuthorizedRoles, and at least two participates associations.

package Model_Management
context Package

inv AllowedElementsInCollaborationRequirementsView:
 self.isCollaborationRequirementsView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()>=2 and
 self.contents->one(isBusinessCollaborationUseCase()) and
 self.contents->select(isParticipates())->size()>=2 and
 self.contents->forAll(isAuthorizedRole() or
 isBusinessCollaborationUseCase()
 or isParticipates())

 667

The TransactionRequirementsView MUST contain exactly one BusinessTransactionUseCase , exactly two AuthorizedRoles,
and exactly two participates associations

package Model_Management
context Package

inv AllowedElementsInTransactionRequirementsView:
 self.isTransactionRequirementsView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()=2 and
 self.contents->one(isBusinessTransactionUseCase()) and
 self.contents->select(isParticipates())->size()=2 and
 self.contents->forAll(isAuthorizedRole() or
 isBusinessTransactionUseCase()
 or isParticipates())

 668

The CollaborationRealizationView MUST contain exactly one BusinessCollaborationRealization, at least two
AuthorizedRoles, and at least two participates associations

package Model_Management
context Package

inv AllowedElementsInRealizationView:
 self.isCollaborationRealizationView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()>=2 and
 self.contents->one(isBusinessCollaborationRealization()) and
 self.contents->select(isParticipates())->size()>=2 and
 self.contents->forAll(isBusinessCollaborationRealization() or
 isParticipates() or isAuthorizedRole())

 669

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 44

A BusinessCollaborationUseCase MUST be associated with two or more AuthorizedRoles via stereotyped binary participate
associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationUCAssociatedWith2AuthorizedRoles:
 self.isBusinessCollaborationUseCase() implies
 self.associations->size() >= 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

 670

A BusinessTransactionUseCase MUST be associated with exactly two AuthorizedRoles via stereotyped binary participate
associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessTransactionUCAssociatedWith2AuthorizedRoles:
 self.isBusinessTransactionUseCase() implies
 self.associations->size() = 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

 671

A BusinessCollaborationRealization MUST be associated with two or more AuthorizedRoles via stereotyped binary
participate associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationAssociatedWith2AuthorizedRoles:
 self.isBusinessCollaborationRealization() implies
 self.associations->size() >= 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

 672

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 45

673

A BusinessCollaborationRealization MUST be the client of exactly one realization dependency to a
BusinessCollaborationUseCase

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationRealizesOneBusinessCollaborationUseCase:
 self.isBusinessCollaborationRealization() implies
 self.clientDependency->size()=1 and
 self.clientDependency->forAll(d | d.isRealization() and
 d.supplier->size()=1 and
 d.supplier->forAll(isBusinessCollaborationUseCase()))

 674

A BusinessCollaborationUseCase MUST include one or more other BusinessCollaborationUseCases or one or more
BusinessTransactionUseCases, but at least one of them.

package Behavioral_Elements::Use_Cases
context UseCase

inv AllowedIncludesOfBCUC:
 self.isBusinessCollaborationUseCase() implies
 self.include->notEmpty() and
 self.include->forAll(i | i.addition.isBusinessCollaborationUseCase() or
 i.addition.isBusinessTransactionUseCase())

 675

A BusinessTransactionUseCase MUST not include further UseCases.

package Behavioral_Elements::Use_Cases
context UseCase

inv NoIncludesOfBTUC:
 self.isBusinessTransactionUseCase() implies
 self.include->collect(addition)->isEmpty()

 676

A BusinessTransactionUseCase MUST be included in at least one BusinessCollaborationUseCase

package Behavioral_Elements::Use_Cases
context UseCase

inv BTUCIncludedAtLeastOnce:
 self.isBusinessTransactionUseCase() implies
 self.include->forAll(base.isBusinessCollaborationUseCase()) and
 self.include->collect(base)->notEmpty()

 677

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 46

678

A BusinessCollaborationUseCase and a BusinessTransactionUseCase MUST not be source or target of an extend association

package Behavioral_Elements::Use_Cases
context UseCase

inv BTUC_BCUC_IsNoExtendTarget:
 (self.isBusinessTransactionUseCase() or
 self.isBusinessCollaborationUseCase()) implies
 self.extend->isEmpty()

 679

A BusinessCollaborationRealization MUST not be source or target of an include or extends association

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationNoIncludesAndExtends:
 self.isBusinessCollaborationRealization() implies
 self.extend->isEmpty() and
 self.include->isEmpty()

 680

All dependencies from/to an AuthorizedRole must be mapsTo dependencies.

package Behavioral_Elements::Use_Cases
context Actor

inv AllDependenciesToAndFromAuthorizedRoleMustBeMapsTo:
 self.isAuthorizedRole() implies
 self.clientDependency->forAll(d | d.isMapsToDependency()) and
 self.supplierDependency->forAll(s | s.isMapsToDependency())

 681

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 47

682

An AuthorizedRole, which participates in a BusinessCollaborationRealization, must be the supplier of exactly one mapsTo
dependency to a BusinessPartnerType. Furthermore the AuthorizedRole, which participates in the
BusinessCollaborationRealization must be the client of exactly one mapsTo dependency to an AuthorizedRole participating in
a BusinessCollaborationUseCase.

package Behavioral_Elements::Use_Cases
context Actor

inv BCRAuthorizedRoleIsMappedByOnlyOneBusinessPartnerType:
 (self.isAuthorizedRole() and
 self.namespace.isCollaborationRealizationView()) implies
 self.supplierDependency->size()=1 and (
 self.supplierDependency->forAll(c | c.client->size()=1 and
 self.supplierDependency->forAll(c.client->
 forAll(isBusinessPartnerType()))))
 and self.clientDependency->size()=1 and (
 self.clientDependency->forAll(s | s.supplier->size()=1 and
 self.clientDependency->forAll(s | s.supplier->forAll(isAuthorizedRole()
 and s.namespace.isCollaborationRequirementsView))))

 683

A source BusinessCollaborationUseCase includes target BusinessTransactionUseCases and/or
BusinessCollaborationUseCases. Each authorized role of the source use case must be mapped maximal once to an authorized
role of the same target use case (but it may be mapped to different AuthorizedRoles of different target use cases). Each
authorized role of the target use case is the supplier of a mapsTo dependency from an authorized role of the source use case.

package Behavioral_Elements::Use_Cases
context UseCase

inv AuthorizedRoleofBTUCisSupplierOfOnlyOneAuthorizedRoleOfBCUC:
 (self.isBusinessTransactionUseCase() or
 self.isBusinessCollaborationUseCase()) implies
 self.include->select(a | a.base <> self)->collect(base)->collect(x |
 x.associations)->
 collect(y | y.allConnections)->select(isAuthorizedRole)->forAll(x |
 self.associations->collect(allConnections)->
 select(isAuthorizedRole)->collect(supplierDependency)->collect(client)
 ->isUnique(x))

 684

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 48

685

A BusinessCollaborationUseCase MUST have the same count of participating AuthorizedRoles, as each
BusinessCollaborationRealization, realizing it.

package Behavioral_Elements::Use_Cases
context UseCase

inv AuthorizedRoleCountSameForBCUCandRealizingBCR:
 self.isBusinessCollaborationRealization() implies
 self.associations->collect(allConnections)->select(isAuthorizedRole)
 ->size() =
 (self.clientDependency->collect(supplier)->collect(associations)
 ->collect(allConnections)->
 select(isAuthorizedRole)->size())

 686

AuthorizedRoles in a TransactionRequirementsView, CollaborationRequirementsView or CollaborationRealizationView must
have a unique name within the scope of the package, they are located in.

package Model_Management
context Package

inv AuthorizedRolesMustHaveUniqueName:
 self.isTransactionRequirementsView() or
 self.isCollaborationRequirementsView() or
 self.isCollaborationRealizationView() implies
 self.contents->select(isAuthorizedRole())
 ->isUnique(element | element.name)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 49

687 5.2.3.4 Example (informative)

ud Order From Quote

(from Request for Quote)

«BusinessTransactionUseCase»
Request for Quote

QuoteResponder

(from Request for Quote)

«BusinessCollaborationUseCase»
Order From Quote

QuoteRequestor

(from Request for Quote)

Buyer

(from Place Order)

Seller

(from Place Order)
(from Place Order)

«BusinessTransactionUseCase»
Place Order

Buyer Seller

«mapsTo»«mapsTo»

«include» «include» «mapsTo»
«mapsTo»

«participates»«participates»

«participates»«participates»

«participates»«participates»

 688
689 Figure 22 CollaborationRequirementsView (BusinessRequirementsView) Example: OrderFromQuote (UseCase Diagram)

ud Place Order

Buyer Seller

«BusinessTransactionUseCase»
Place Order «participates»«participates»

 690
691 Figure 23 TransactionRequirementsView (BusinessRequirementsView) Example: PlaceOrder Transaction

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 50

ud Order From Quote

«BusinessCollaborationRealization»
Order From Quote

Buyer

Buyer

(from Order From Quote)

Seller

(from Order From Quote)
(from Order From Quote)

«BusinessCollaborationUseCase»
Order From Quote

Seller

Purchasing
Organization

(from Order From Quote)

Selling Organization

(from Order From Quote)

«realize»

«mapsTo»«mapsTo»

«mapsTo»«mapsTo»

«participates»«participates»

«participates»«participates»

 692

693
694

695

Figure 24 CollaborationRealizationView (BusinessRequirementsView) Example: Realization of the OrderFromQuote Collaboration
between Purchasing Organization and SellingOrganization

5.2.4 OCL methods used in all packages of the BRV (normative)

OCL-Methods

package Foundation::Core
context ModelElement

--Predefined method which evaluates, if the given Modelelement
--has a stereotype equal to the passed name
def:
let hasStereotype (st : String) : Boolean =
 self.stereotype->select(cst | cst.name = st)->notEmpty()

--Predefined method which evaluates, if the given element
--has the stereotype 'InternalBusinessEntityState'
def:
let isInternalBusinessEntityState() : Boolean =
 self.oclIsKindOf(ObjectFlowState) and
 self.hasStereotype('InternalBusinessEntityState')

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 51

--Predefined method which evaluates, if the given element
--has the stereotype 'ShardedBusinessEntityState'
def:
let isSharedBusinessEntityState() : Boolean =
 self.oclIsKindOf(ObjectFlowState) and
 self.hasStereotype('SharedBusinessEntityState')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessActivity'
def:
let isBusinessProcessActivity() : Boolean =
 self.oclIsKindOf(ObjectFlowState) and
 self.hasStereotype('BusinessProcessActivity')

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is initial
def:
let isInitialState() : Boolean =
 self.oclAsType(Pseudostate).kind = PseudostateKind::initial and
 self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is choice
def:
let isChoice() : Boolean =
 self.oclAsType(Pseudostate).kind = PseudostateKind::choice and
 self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is fork
def:
let isFork() : Boolean =
 self.oclAsType(Pseudostate).kind = PseudostateKind::fork and
 self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is join
def:
let isJoin() : Boolean =
 self.oclAsType(Pseudostate).kind = PseudostateKind::join and
 self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or is 'FinalState'
def:
let isFinalState() : Boolean =
 self.oclIsKindOf(FinalState)

-- Returns true if the type of the element 'Transition'
def:
let isTransition() : Boolean =

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 52

 self.oclIsKindOf(Transition)

--Returns true if the element is a standard-element of an ActivityGraph
def:
let isPseudoStateOrFinalStateOrTransition() : Boolean =
 isInitialState() or isChoice() or isFork() or isJoin() or isTransition()
 or isFinalState()

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessView'
def :
let isBusinessProcessView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessProcessView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityView'
def :
let isBusinessEntityView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessEntityView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessRequirementsView'
def :
let isBusinessRequirementsView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BusinessRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessActivityModel'
def:
let isBusinessProcessActivityModel() : Boolean =
 self.oclIsKindOf(ActivityGraph) and
 self.hasStereotype('BusinessProcessActivityModel')

--return true if the given element is a partition
def:
let isPartition() : Boolean =
 self.oclIsKindOf(Partition)

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntity'
def :
let isBusinessEntity() : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('BusinessEntity')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityState'
def :
let isBusinessEntityState() : Boolean =
 self.oclIsKindOf(State) and

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 53

 self.hasStereotype('BusinessEntityState')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityLifecycle'
def :
let isBusinessEntityLifecycle() : Boolean =
 self.oclIsKindOf(StateMachine) and
 self.hasStereotype('BusinessEntityLifecycle')

--return true if the given element is a package
def :
let isPackage() : Boolean =
 self.oclIsKindOf(Package)

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationUseCase'
def :
let isBusinessCollaborationUseCase() : Boolean =
 self.oclIsKindOf(UseCase) and
 self.hasStereotype('BusinessCollaborationUseCase')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionUseCase'
def :
let isBusinessTransactionUseCase() : Boolean =
 self.oclIsKindOf(UseCase) and
 self.hasStereotype('BusinessTransactionUseCase')

--Predefined method wich evaluates, if the given element
--has the stereotype 'BusinesCollaborationRealization'
def:
let isBusinessCollaborationRealization() : Boolean =
 self.oclIsKindOf(Collaboration) and
 self.hasStereotype('BusinessCollaborationRealization')

--Predefined method which evaluates, if the given element
--has the stereotype 'AuthorizedRole'
def :
let isAuthorizedRole() : Boolean =
 self.oclIsKindOf(Actor) and
 self.hasStereotype('AuthorizedRole')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessPartnerType'
def :
let isBusinessPartnerType() : Boolean =
 self.oclIsKindOf(Actor) and
 self.hasStereotype('BusinessPartnerType')

--Predefined method which evaluates, if the given element
--has the stereotype 'mapsTo'
def :
let isMapsToDependency() : Boolean =
 self.oclIsKindOf(Dependency) and

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 54

 self.hasStereotype('mapsTo')

--Predefined method which evaluates, if the given element
--is a Realization dependency
def :
let isRealization() : Boolean =
 self.oclIsKindOf(Abstraction) and
 self.hasStereotype('realize')

-- checks if an Association is stereotyped as participates
def:
let isParticipates() : Boolean =
 self.oclIsKindOf(Association) and
 self.hasStereotype('participates')

--Predefined method which evaluates, if the given element
--is an Association
def:
let isAssociation() : Boolean =
 self.oclIsKindOf(Association)

--Predefined method which evaluates, if the given element
--has the stereotype 'CollaborationRequirementsView'
def :
let isCollaborationRequirementsView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('CollaborationRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'TransactionRequirementsView'
def :
let isTransactionRequirementsView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('TransactionRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'CollaborationRealizationView'
def :
let isCollaborationRealizationView() : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('CollaborationRealizationView')

-- checks if a UseCase is stereotyped a BusinessProcess
def :
let isBusinessProcess() : Boolean =
 self.oclIsTypeOf(UseCase) and
 self.hasStereotype('BusinessProcess')

 696
697

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 55

5.3 Business Transaction View 698
699

700

701

702

5.3.0 Views in the Transaction View

5.3.0.1 Conceptual Description (informative)

cd BusinessTransactionView - Conceptual

BusinessTransactionView

BusinessChoreographyView BusinessInteractionView BusinessInformationView

1..*1..*1..*

 703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

Figure 25 BusinessTransactionView Conceptual Overview

The Business Transaction View (BTV) is an elaboration on the business requirements view by the
business analyst and is how the business analyst sees the process to be modeled. According to these
requirements the BTV defines a choreography of information exchanges. The business transaction view
package is a container for three different artifacts that together describe the overall choreography of
information exchanges. The business choreography view is a container for artifacts describing the flow of
a complex business collaboration between business partner types that may involve many steps. In fact, a
business choreography view captures artifacts that define a flow in accordance to the requirements of a
corresponding collaboration requirements view of the BRV. A business interaction view is a container for
artifacts that define a choreography leading to synchronized states of business entities at both sides of the
interaction. In fact, a business interaction view captures artifacts that define a flow in accordance to the
requirements of a corresponding transaction requirements view of the BRV. A business information view
is a container of artifacts that describe the information exchanged in an interaction. Accordingly, the
business choreography view and the business interaction view deal with artifacts describing the dynamic
aspects of a collaboration and the business information view deals with artifacts describing the structural
aspects of a collaboration. Each of the three views must occur at least once in the business transaction
view. Thus the BusinessTransactionView is composed of one to many BusinessChoreographyViews, of
one to many BusinessInteractionViews, and of one to many BusinessInformationViews.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 56

723

724

5.3.0.2 Stereotypes and Tag Definitions (normative)

cd BusinessTransactionView - Abstract Syntax

Package
BusinessChoreographyView::
BusinessChoreographyView

Package
BusinessInformation::

BusinessInformationView

Package
BusinessInteractionView::
BusinessInteractionView

Package
RegistryObject

Management::
BusinessLibraryPackage

+ copyright: String [0..*]
+ owner: String [0..*]
+ reference: String [0..*]

725
726

Figure 26 BusinessTransactionView Abstract Syntax

Stereotype BusinessChoreographyView

Base Class Package

Parent BusinessLibraryPackage (from BaseModule)

The business choreography view is a container for artifacts describing the flow of a complex business
collaboration between business partner types that may involve many steps. Description

 Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 727

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 57

728
Stereotype BusinessInteractionView

Base Class Package

Parent BusinessLibraryPackage (from BaseModule)

A business interaction view is a container for artifacts that define a choreography leading to synchronized
states of business entities at both sides of the interaction. Description

 Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 729
Stereotype BusinessInformationView

Base Class Package

Parent BusinessLibraryPackage (from BaseModule)

A business information view is a container of artifacts that describe the information exchanged in an
interaction. Description

 Inherited tagged values:

Tag Definition

− baseURN
− owner
− copyright
− reference
− version
− status
− businessTerm.

 730

731 5.3.0.3 Constraints (normative)

A BusinessTransactionView MUST contain at least one BusinessChoreographyView package, at least one
BusinessInteractionView package, and at least one BusinessInformationView package. .

package Model_Management
context Package

inv packagesAllowedInBTV:
 self.isBusinessTransactionView() implies
 self.contents->exists(isBusinessChoreographyView()) and
 self.contents->exists(isBusinessInteractionView()) and
 self.contents->exists(isBusinessInformationView())

 732

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 58

5.3.1 Business Choreography View 733

734 5.3.1.1 Conceptual Description (informative)
cd BusinessChoreographyView - Conceptual

BusinessCollaborationActivity

BusinessCollaborationProtocol

BusinessTransactionActivity

BusinessChoreographyBehavior

BusinessChoreography

BusinessCollaborationUseCase

BusinessChoreographyView

BusinessTransaction

10..*

0..* 0..*

1

1..*

1

+behavior 1

+context 1

1

maps to

1

 735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

Figure 27 BusinessChoreographyView (BusinessTransactionView) Conceptual Overview

A business choreography view is used to define the business choreography of exactly one business
collaboration. Therefore, the BusinessChoreographyView is composed of exactly one
BusinessChoreography. A business choreography is a persistent representation of the execution of a
business collaboration. The execution order of a business collaboration, i.e. the choreography of the
business collaboration, is defined by the business choreography behavior. Each BusinessChoreography is
composed of exactly one BusinessChoreographyBehavior. The business choreography behavior follows
exactly the requirements defined in a corresponding business collaboration use case of the BRV. Each
business collaboration use case of the BRV is mapped to exactly one business choreography behavior.
Hence, a BusinessCollaborationUseCase and the BusinessChoreographyBehaviour have a 1 to 1 mapsTo
relationship.

Business choreography behavior is an abstract concept. In a future version there might exist different
approaches to describe the choreography of a business collaboration. In this version, the only valid
specialization of a BusinessChoreographyBehavior is the BusinessCollaborationProtocol. Thus, a
business choreography is currently always defined by a business collaboration protocol. The activities of
a business collaboration protocol are business collaboration activities and/or business transaction
activities. Hence, a BusinessCollaborationProtocol is composed of zero to many
BusinessCollaborationActivities and of zero to many BusinessTransactionActivities. However, at least
one business collaboration activity or a business transaction activity must be present in a business

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 59

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

772

collaboration protocol. Transitions defining the flow among the business collaboration activities and/or
business transaction activities may be guarded by the states of business entities.

A business collaboration activity is characterized by the fact that it is refined by another business
collaboration protocol. Not each business collaboration is a refined business collaboration activity – only
the nested business collaboration protocols. A business collaboration protocol may be nested in different
business collaboration activities. Thus, the aggregation relationship between BusinessCollabortionActivity
and BusinessCollaborationProtocol is (0..n) to 1.

A business transaction activity is characterized by the fact that it is refined by a business transaction.
Since the business transaction is a concept of the business interaction view it is described in more detail
further below. Each business transaction must be at least once used to refine a business transaction
activity. A business transaction may be nested in different business transaction activities. Hence, the
aggregation relationship between BusinessTransactionActivity and BusinessTransaction is (1..n) to 1.

5.3.1.2 Stereotypes and Tag Definitions (normative)

cd BusinessChoreographyView - Abstract Syntax

BusinessCollaborationProtocol

SubactivityState
BusinessTransactionActivity

+ isConcurrent: Boolean
+ timeToPerform: TimeExpression

Class
BusinessChoreography

ActivityGraph
BusinessChoreographyBehavior

SubactivityState
BusinessCollaborationActivity

773
774
775

Figure 28 BusinessChoreographyView (BusinessTransactionView) Abstract Syntax

Stereotype BusinessChoreography

Base Class Class

Parent N/A

Description A business choreography is a persistent representation of the execution of a business collaboration.

Tag Definition No Tagged Values

776

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 60

777
Stereotype BusinessChoreographyBehavior (abstract)

Base Class ActivityGraph

Parent N/A

The business choreography behavior defines the dynamic behavior of a business collaboration, i.e. the
choreography of a business collaboration. Description

Tag Definition No Tagged Values

778
Stereotype BusinessCollaborationProtocol

Base Class ActivityGraph

Parent BusinessChoreographyBehavior

A business collaboration protocol is a specialization of a business choreography behaviour. It choreographs
business transaction activities and/or business collaboration activities. At least one activity of either one
must be present. A business collaboration protocol is a long running transaction that does not meet the
atomic principle of transactions. It should be used in cases where transaction rollback is inappropriate.

Description

Tag Definition No Tagged Values

779
Stereotype BusinessTransactionActivity

Base Class ActionState

Parent N/A

A business transaction activity is an activity within a business collaboration protocol. It is an action state
which is refined by a nested business transaction. The business transaction activity executes the nested
business transaction. The business transaction activity can be executed more than once if the
“isConcurrent” property is true.

Description

timeToPerform

Tag Definition

Type TimeExpression

Multiplicity 1

Description A business transaction activity has to be executed within a specific duration. The initiating
partner must send a failure notification to a responding partner on timeout. A responding
partner simple terminates its activity. The time to perform is the maximum duration
between the moment the requesting authorized role initiates the business transaction
activity, i.e. sending the requesting business information, and the moment the requesting
authorized role receives a substantive response. The substantive response is the
responding business information if there is any. In case not, it is the acknowledgement of
processing, if any. If not it is the acknowledgement of receipt, if any.

isConcurrent

Type Boolean

Multiplicity 1

Description If the business transaction activity is concurrent then more than one business transaction
activity of the same underlying business transaction can be open at one time in executing
the same business collaboration with the same business partner type. If the business
transaction activity is not concurrent then only one business transaction activity of the
same underlying business transaction can be open at one time.

 780

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 61

781
Stereotype BusinessCollaborationActivity

Base Class ActionState

Parent N/A

A business collaboration activity is an activity within a business collaboration protocol. It is an action-state
which is refined by the activity graph of a nested business collaboration protocol. It follows, that business
collaboration protocols might be recursively nested. The business collaboration activity executes the nested
business collaboration protocol exactly once.

Description

Tag Definition No Tagged Values

782

783

5.3.1.3 Constraints (normative)

A BusinessChorographyBehavior MUST be the client of exactly one mapsTo dependency to a BusinessCollaborationUseCase

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BCBmapsToBCUseCase:
 self.isBusinessChoreographyBehavior() implies
 self.clientDependency->size()=1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessCollaborationUseCase()) and
 d.supplier->size=1)

 784

A BusinessChoreographyView package MUST contain exactly one BusinessChoreography and no other elements.

package Model_Management
context Package

inv BCVcontainsExactlyOneBC:
 self.isBusinessChoreographyView() implies
 self.contents->one(isBusinessChoreography()) and
 self.contents->size()=1

 785

The behavior of a BusinessChoreography MUST be described by exactly one BusinessChoreographyBehaviour

package Foundation::Core
context Class

inv BCdescribedByOneBusinessChoreographyBehavior:
 self.isBusinessChoreography() implies
 self.behavior->one(isBusinessChoreographyBehavior()) and
 self.behavior->size()=1

 786

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 62

787

A BusinessCollaborationProtocol MUST contain at least one BusinessTransactionActivity or BusinessCollaborationActivity
and MAY contain PseudoStates, FinalStates and Transitions.

package Behavioral_Elements::State_Machines
context CompositeState

inv AllowedModelElementsInBCP:
 self.stateMachine.isBusinessCollaborationProtocol() implies
 self.subvertex->forAll(isBusinessTransactionActivity()
 or isBusinessCollaborationActivity()
 or isPseudoStateOrFinalStateOrTransition()
 or isTransition()
)
 and (self.subvertex->exists(isBusinessTransactionActivity()) or
 self.subvertex->exists(isBusinessCollaborationActivity()))

 788

A BusinessCollaborationActivity MUST be refined by exactly one BusinessCollaborationProtocol via a dependency with the
stereotype mapsTo.

package Behavioral_Elements::Activity_Graphs
context ActionState

inv BCArefinedByExactlyOneBCP:
 self.isBusinessCollaborationActivity() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessCollaborationProtocol()) and
 d.supplier->size=1)

 789

A BusinessTransactionActivity MUST be refined by exactly one BusinessTransaction via a dependency with the stereotype
mapsTo.

package Behavioral_Elements::Activity_Graphs
context ActionState

inv BTArefinedByExactlyOneBT:
 self.isBusinessTransactionActivity() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessTransaction()) and d.supplier->size=1)

 790

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 63

791 5.3.1.4 Example (informative)

ad Order From Quote

«BusinessTransactionActivity»
Request for Quote

«BusinessTransactionActivity»
Place Order

Success

Failure

[Order.rejected]

[Quote.refused]

[Order.accepted]

[Registration.registered]

[Quote.provided]

 792
793
794

Figure 29 BusinessChoreographyView (BusinessTransactionView) Example: OrderFromQuote BusinessCollaborationProtocol
(ActivityGraph)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 64

5.3.2 Business Interaction View 795

796 5.3.2.1 Conceptual Description (informative)
cd BusinessInteractionView - Conceptual

RespondingInformationEnvelope

BusinessTransaction

PartnershipRequirementsView::
AuthorizedRole

RequestingBusinessActivity RespondingBusinessActivity

RequestingInformationEnvelope

BusinessTransactionSwimlane

PartnershipRequirementsView::
BusinessTransactionUseCase

BusinessInformation::
InformationEnvelope

BusinessAction

BusinessInteractionBehaviorBusinessInteractionBusinessInteractionView

1

+output1

1

mapsTo

1
+behaviour

1+context

1
1

0..1

+type

1..*

mapsTo

1..*

1 1

+partition 2

1

+input0..1

11

+output0..1

+type

1

+input1

1

1

11

 797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

Figure 30 BusinessInteractionView (BusinessTransactionView) Conceptual Overview

A business interaction view is used to define exactly one business interaction that leads to a synchronized
business state between the two authorized roles executing it. Thus, the BusinessInteractionView is
composed of exactly one BusinessInteraction. A business interaction is a persistent representation of a
synchronization of business states between authorized roles. The choreography of this synchronization
and the required information exchanges are defined by the business interaction behavior. Each
BusinessInteraction is composed of exactly one BusinessInteractionBehavior. The business interaction
behavior follows exactly the requirements defined in a corresponding business transaction use case of the
BRV. Each BusinessTransactionUseCase of the BRV is mapped to exactly one
BusinessInteractionBehavior, and each BusinessInteractionBehavior is mapped from exactly one
BusinessTransactionUseCase.

BusinessInteractionBehavior is an abstract concept. In a future version there may exist different
approaches to describe the choreography and information exchanges in a business interaction. In this
version, the only valid specialization of a BusinessInteractionBehavior is the BusinessTransaction. A
business transaction is an atomic business process between two authorized roles, which involves sending
business information from one authorized role to the other and an optional reply. The business transaction
is built by two partitions - one for each authorized role. Hence, a BusinessTransaction is composed of
exactly two BusinessTransactionSwimlanes. Each BusinessTransactionSwimlane relates to one
AuthorizedRole. An Authorized Role is assigned to exactly one BusinessTransactionSwimlane. It follows,
that the two swimlanes of a business transaction must be assigned to different authorized roles.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 65

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

Within a business transaction each authorized role performs exactly one business action – the requesting
authorized role performs a requesting business activity and the responding authorized role performs a
responding business activity. Each business action – no matter whether requesting or responding business
activity – is assigned to a swimlane, and each swimlane comprises exactly one business action. It follows
that a BusinessTransaction is composed of exactly one RequestingBusinessActivity and exactly one
RespondingBusinessActivity. Both RequestingBusinessActivity and RespondingBusinessActivity are
specializations of BusinessAction. A BusinessAction is assigned to one BusinessTransactionSwimlane,
and a BusinessTransactionSwimlane comprises one BusinessAction. Since a swimlane is dedicated to
exactly one authorized role, it follows that the business action is executed by this authorized role.
Furthermore an authorized role executes just one business action, because only one business action sits
within a swimlane.

The requesting business activity outputs the requesting information envelope that is input to the
responding business activity. Business information created by the responding business activity and
returned to the requesting business activity is optional. It follows, that a BusinessTransaction is composed
of exactly one RequestingInformationEnvelope and zero or one RespondingInformationEnvelope. Both
RequestingInformationEnvelope and RespondingInformationEnvelope are instances of the type
InformationEnvelope. A RequestingBusinessActivity outputs exactly one RequestingInformationEnvelope
and a RequestingInformationEnvelope is created by exactly one RequestingBusinessActivity. A
RequestingBusinessActivity receives zero or one RespondingInformationEnvelope as input and a
RespondingInformatinEnvelope is input to exactly one RequestingBusinessActivity.
A RespondingBusinessActivity outputs zero or one RespondingInformationEnvelope and a
RespondingInformationEnvelope is created by exactly one RespondingBusinessActivity. A
RespondingBusinessActivity receives exactly one RequestingInformationEnvelope as input and a
RequestingInformationEnvelope is input to exactly one RespondingBusinessActivity.

Note, that a RequestingInformationEnvelope (or a RespondingInformationEnvelope) is a stereotype of the
base class ObjectFlowState. The type of the ObjectFlowState is defined by the InformationEnvelope that
is a stereotype of base class Class. According to UML, multiple ObjectFlowStates might be instances of
the same Class. It follows that different requesting or responding information envelopes might be
instances of the same information envelope. In other words, an information envelope might be reused in
different business transactions.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 66

853 5.3.2.2 Stereotypes and Tag Definitions (normative)
cd BusinessInteractionView - Abstract Syntax

BusinessTransaction

+ BusinessTransactionType: String
+ isSecureTransportRequired: Boolean

ActionState
BusinessAction

+ isAuthorizationRequired: Boolean
+ isIntelligibleCheckRequired: Boolean
+ isNonRepudiationReceiptRequired: Boolean
+ isNonRepudiationRequired: Boolean
+ timeToAcknowledgeProcessing: TimeExpression
+ timeToAcknowledgeReceipt: TimeExpression

RequestingBusinessActivity

+ retryCount: Integer
+ timeToRespond: TimeExpression

RespondingBusinessActivity

ObjectFlowState
RespondingInformationEnvelope

ObjectFlowState
RequestingInformationEnvelope

Partition
BusinessTransactionSwimlane

ActivityGraph
BusinessInteractionBehavior

Class
BusinessInteraction

854
855
856

Figure 31 BusinessInteractionView (BusinessTransactionView) Abstract Syntax

Stereotype BusinessInteraction

Base Class Class

Parent N/A

A business interaction is a persistent representation of a synchronization of business states between
authorized roles. It is a unit of work that allows roll-back. Description

Tag Definition No Tagged Values

857
Stereotype BusinessInteractionBehavior (abstract)

Base Class ActivityGraph

Parent N/A

A business interaction behavior defines the choreography of actions as well as involved business
information and business signal exchanges that lead to synchronized business states between two
authorized roles executing it.

Description

Tag Definition No Tagged Values

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 67

858
Stereotype BusinessTransaction

Base Class Activity Graph

Parent BusinessInteractionBehavior

A business transaction is the basic building block to define choreography between authorized roles. If an
authorized role recognizes an event that changes the state of a business object, it initiates a business
transaction to synchronize with the collaborating authorized role. It follows that a business transaction is an
atomic unit that leads to a synchronized state in both information systems. We distinguish one-way and
two-way business transaction: In the former case, the initiating authorized role reports an already effective
and irreversible state change that the reacting authorized role has to accept. Examples are the notification
of shipment or the update of a product in a catalog. It is a one-way business transaction, because business
information (not including business signals for acknowledgments) flows only from the initiating to the
reacting authorized role. In the other case, the initiating partner sets the business object(s) into an interim
state and the final state is decided by the reacting authorized role. Examples include request for
registration, search for products, etc. It is a two-way transaction, because business information flows from
the initiator to the responder to set the interim state and backwards to set the final and irreversible state
change. In a business context irreversible means that returning to an original state requires another business
transaction. E.g., once a purchase order is agreed upon in a business transaction a rollback is not allowed
anymore, but requires the execution of a cancel order business transaction. We distinguish 2 one-way
business transactions and four two-way business transactions. The type of transaction is indicated in the
tagged value of business transaction type. The other tagged values provide quality of service parameters.

Description

A business transaction follows always the same pattern: A business transaction is performed between two
authorized roles that are assigned to exactly one swimlane each. Each authorized role performs exactly one
activity. An object flow between the requesting and the responding business activity is mandatory. An
object flow in the reverse direction is optional. According to the business transaction semantics, the
requesting business activity does not end after sending the envelope - it is still alive. The responding
business activity may output the response which is returned to the still living requesting business activity.

Tag Definition

businessTransactionType

Type String

Enumeration: “Commercial Transaction” “Request/Confirm” “Query/Response”
“Request/Response” “Notification” “Information Distribution”

Multiplicity 1

Description The business transaction type determines a corresponding business transaction
pattern. A business transaction pattern provides a language and grammar for
constructing business transactions. The business transaction type follows one of the
following six property-value conventions:

(1) Commercial Transaction - used to model the “offer and acceptance” business
transaction process that results in a residual obligation between both parties to fulfill
the terms of the contract

(2) Query/Response – used to query for information that a responding partner
already has e.g. against a fixed data set that resides in a database

(3) Request/Response - used for business contracts when an initiating partner
requests information that a responding partner already has and when the request for
business information requires a complex interdependent set of results

(4) Request/Confirm - used if an initiating partner asks for information that requires
only confirmation with respect to previously established contracts or with respect to
a responding partner’s business rules

(5) Information Distribution - used to model an informal information exchange
business transaction that therefore has no non-repudiation requirements

(6) Notification - used to model a formal information exchange business transaction
that therefore has non-repudiation requirements

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 68

isSecureTransportRequired

Type Boolean

Multiplicity 1

Description Both partners must agree to exchange business information using a secure transport
channel. The following security controls ensure that business document content is
protected against unauthorized disclosure or modification and that business services
are protected against unauthorized access. This is a point-to-point security
requirement. Note that this requirement does not protect business information once it
is off the network and inside an enterprise. The following are requirements for
secure transport channels.

Authenticate sender identity – Verify the identity of the sender (employee or
organization) that is initiating the interaction (authenticate). For example, a driver’s
license or passport document with a picture is used to verify an individual’s identity
by comparing the individual against the picture.

Authenticate receiver identity – Verify the identity of the receiver (employee or
organization) that is receiving the interaction.

Verify content integrity – Verify the integrity of the content exchanged during the
interaction i.e. check that the content has not been altered by a 3rd party.

Maintain content confidentiality – Confidentiality ensures that only the intended,
receiver can read the content of the interaction. Information exchanged during the
interaction must be encrypted when sent and decrypted when received. For example,
you seal envelopes so that only the recipient can read the content.

 859
Stereotype BusinessTransactionSwimlane

Base Class Partition

Parent N/A

A business transaction swimlane is used to define an area of responsibility. An authorized role is appointed
to the partition of a business transaction swimlane. This authorized role takes on the responsibility for the
business action that is allocated within that area of responsibility.

Description

Tag Definition No Tagged Values

860

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 69

861
Stereotype BusinessAction (abstract)

Base Class ActionState

Parent N/A

The business action is executed by an authorized role during a business transaction. Business action is an
abstract stereotype. This means a business action is either a requesting business activity or a responding
business activity.

Description

IsAuthorizationRequired

Tag Definition

Type Boolean

Multiplicity 1

Description If an authorized role needs authorization to request a business action or to respond to
a business action then the sender must sign the business document exchanged and
the receiver must validate this business control and approve the authorizer. A
receiver must signal an authorization exception if the sender is not authorized to
perform the business activity. A sender must send notification of failed authorization
if a receiver is not authorized to perform the responding business activity.

isNonRepudiationRequired

Type Boolean

Multiplicity 1

Description The isNonRepudiationRequired tag is used to indicate that an involved party must
not be able to repudiate the execution of the business action that input/outputs
business information.

isNonRepudiationReceiptRequired

Type Boolean

Multiplicity 1

Description The isNonRepudiationOfReceiptRequired tag requires the receiver of an information
envelope to send a signed receipt. The isNonRepudiationOfReceiptRequired tag
indicates that an involved party must not be able to repudiate the execution of
sending the signed receipt.

timeToAcknowledge Receipt

Type TimeExpression

Multiplicity 1

Description Both partners may agree to mutually verify receipt of business information within a
specific time duration. Acknowledgements of receipt may be sent for both the
requesting business information and the responding business information. This
means the sender of the business information may be the requesting authorized role
as well as the responding authorized role – it depends on whether a requesting or a
responding business information is acknowledged. Similarly, the affirmant may be
the requesting authorized role as well as the responding authorized role – again
depending of which business information is acknowledged. Inasmuch we use the
terms sender and affirmant in the explanation of acknowledgement of receipt
semantics.

An affirmant must exit the transaction if they are not able to verify the proper receipt
of a business information within the agree timeout period. A sender must retry a
business transaction if necessary or must send notification of failed business control
(possibly revoking a contractual offer) if an affirmant does not verify properly
receipt of a business information within the agreed time period. The time to
acknowledge receipt is the maximum duration from the time a business information

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 70

is sent by a sender until the time a verification of receipt is “properly received” by
the sender (of the business information). This verification of receipt is an audit-able
business signal and is instrumental in contractual obligation transfer during a
contract formation process (e.g. offer/accept).

timeToAcknowledgeProcessing

Type TimeExpression

Multiplicity 1

Description Similarly to the timeToAcknowledgeReceipt, the sender of a business information
might be the requesting authorized role as well as the responding authorized role –
depending whether a requesting or a responding business information is
acknowledged. Also the affirmant may be one of the two authorized roles. Thus, we
use again the terms sender and affirmant in the explanation of the acknowledgment
of processing semantics.

Both partners may agree to the need for an acknowledgment of processing to be
returned by a responding partner after the requesting business information passes a
set of business rules and is handed over to the application for processing. The time
to acknowledge processing of a business information is the duration from the time a
sender sends a business information until the time an acknowledgement of
processing is “properly received” by the sender (of the business information). An
affirmant must exit the transaction if they are not able to acknowledge processing of
business information within the maximum timeout period. A sender must retry a
business transaction if necessary or must send notification of failed business control
(possibly revoking a contractual offer) if an affirmant does not acknowledge
processing of business information within the agreed time period.

isIntelligibleCheckRequired

Type Boolean

Multiplicity 1

Description In order to define the isIntelligibleCheckRequired semantics, we use again the terms
sender and affirmant as introduced for the last two tag definitions.

Both partners may agree that an affirmant must check that business information is
not garbled (unreadable, unintelligible) before verification of proper receipt is
returned to the sender (of the business information). Verification of receipt must be
returned when a document is “accessible” but it is preferable to also check for
garbled transmissions at the same time in a point-to-point synchronous business
network where partners interact without going through an asynchronous service
provider.

 862

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 71

863
Stereotype RequestingBusinessActivity

Base Class ActionState

Parent BusinessAction

A requesting business activity is a business action that is performed by an authorized role requesting
business service from another authorized role. Description

timeToRespond

Tag Definition

Type TimeExpression

Multiplicity 1

Description Both partners may agree in case of a two-way business transaction that the
responding authorized role must return the responding information business
information within a specific duration.

A responding authorized role must exit the transaction if they are not able to return
the responding business information within the agreed timeout period. A requesting
authorized role must retry a business transaction if necessary or must send
notification of failed business control (possibly revoking a contractual offer) if a
responding authorized role does not deliver the responding business information
within the agreed time period. The time to perform is the maximum duration from
the time a requesting business information is sent by a requesting authorized role
until the time a responding business information is “properly received” by the
requesting authorized role in return.

retryCount

Type Integer

Multiplicity 1

Description The requesting authorized role must re-initiate the business transaction so many
times as specified by the retry count in case that a time-out-exception – by
exceeding the time to acknowledge receipt, or the time to acknowledge processing,
or the time to respond – is signaled. This parameter only applies to time-out signals
and not document content exceptions or sequence validation exceptions.

 Inherited tagged values:

- isAuthorizationRequired
- isNonRepudiationRequired
- isNonRepudiationReceiptRequired
- timeToAcknowledgeReceipt
- timeToAcknowledgeAcceptance
- isIntelligibleCheckRequired

 864

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 72

865
Stereotype RespondingBusinessActivity

Base Class ActionState

Parent Business Action

A responding business activity is a business action that is performed by an authorized role responding to
another authorized role’s request for business service. Description

Inherited tagged values:

Tag Definition

- isAuthorizationRequired
- isNonRepudiationRequired
- isNonRepudiationReceiptRequired
- timeToAcknowledgeReceipt
- timeToAcknowledgeAcceptance
- isIntelligibleCheckRequired

 866
Stereotype RequestingInformationEnvelope

Base Class ObjectFlowState

Parent N/A

The requesting information envelope is a container of business information that is sent from the requesting
authorized role to the responding authorized role to indicate a state change in one or more business entities.
This business state change might be irreversible in the case of a one-way business transaction or an interim
state of a two-way business transaction. It is important to note that the term requesting information
envelope does not mean that the business information refers to a request in a business sense. The term
requesting information envelope indicates that the execution of a transaction is requested from the
requesting authorized role to the responding authorized role – no matter whether this is an information
distribution, a notification, a request, or the offer in a commercial transaction.

Description

Tag Definition No Tagged Values

867
Stereotype RespondingInformationEnvelope

Base Class ObjectFlowState

Parent N/A

The responding information envelope is a container of business information that is sent in case of a two-
way business transaction from the responding authorized role to the requesting authorized role in order to
set one or more business entities in a final state (which were in an interim state before).

Description

Tag Definition No Tagged Values

868

869

870

5.3.2.3 Constraints (normative)

A BusinessInteractionView package MUST contain exactly one BusinessInteraction and no other elements

package Model_Management
context Package

inv BIVcontainsExactlyOneBI:
 self.isBusinessInteractionView() implies
 self.contents->one(isBusinessInteraction())
 and self.contents->size()=1

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 73

871

A BusinessInteractionBehavior MUST be connected with exactly one BusinessTransactionUseCase via a dependency with
the stereotype mapsTo

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BIBmapsToExactlyOneBusinessTransactionUseCase:
 self.isBusinessInteractionBehavior() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessTransactionUseCase()) and
 d.supplier->size=1)

 872

The behaviour of a BusinessInteraction must be described by exactly one BusinessInteractionBehavior.

package Foundation::Core
context Class

inv BehaviorOfBIdescribedByExactlyOneBusinessInteractionBehavior:
 self.isBusinessInteraction() implies
 self.behavior->one(isBusinessInteractionBehavior()) and
 self.behavior->size()=1

 873

A BusinessTransaction MUST have exactly two partitions, which MUST be stereotyped as BusinessTransactionSwimlanes.
One partition MUST contain the RequestingBusinessActivity and one MUST contain the RespondingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BusinessTransactionHasExactlyTwoBTSwimlanes:
 self.isBusinessTransaction() implies
 self.oclAsType(ActivityGraph).partition->size() = 2
 and self.oclAsType(ActivityGraph).partition->forAll(part |
 part.isUMMTransactionSwimlane()
 and (part.contents->one(isRequestingBusinessActivity()) xor part.contents
 ->one(isRespondingBusinessActivity())))
 and self.oclAsType(ActivityGraph).partition->collect(part |
 part.contents)->one(isRequestingBusinessActivity())
 and self.oclAsType(ActivityGraph).partition->collect(part |
 part.contents)->one(isRespondingBusinessActivity())

 874

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 74

875

A BusinessTransactionSwimlane MUST have a classifier, which MUST be one of the associated AuthorizedRoles of the
corresponding BusinessTransactionUseCase

package Behavioral_Elements::Activity_Graphs
context Partition

inv BusinessTransactionSwimlaneClassifier:
 self.isUMMTransactionSwimlane() implies
 self.classifierRole.base->size()=1 and
 self.activityGraph.clientDependency->
 collect(s | s.supplier)->collect(a | a.oclAsType(UseCase).associations)->
 collect(allConnections)
 ->select(isAuthorizedRole())->one(x | x = (self.classifierRole.base->
 asSequence->first()))

 876

The partition of the requesting authorized role must contain exactly one RequestingBusinessActivity, one
RequestingInformationEnveleope and one InitialState. Furthermore there MUST be at least two FinalStates in this
BusinessTransactionSwimlane

package Behavioral_Elements::Activity_Graphs
context Partition

inv ContentsOfRequestingPartition:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->forAll(isRequestingBusinessActivity()
 or isRequestingInformationEnvelope()
 or isInitialState()
 or isFinalState()
 or isTransition()
)
 and
 self.contents->one(isRequestingInformationEnvelope()) and
 self.contents->select(isFinalState())->size()>1 and
 self.contents->one(isInitialState())

 877

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 75

878

The partition of the responding authorized role MUST exactly contain one RespondingBusinessActivity. Furthermore if the
transaction is a two way business transaction, then the partition must contain a RespondingInformationEnvelope as well. If
the transaction is a one way business transaction, then the responder partition must not contain a
RespondingInformationEnvelope.

package Behavioral_Elements::Activity_Graphs
context Partition

inv ContentsOfResponderPartition :
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->forAll(isRespondingBusinessActivity()
 or isRespondingInformationEnvelope()
 or isTransition()
)
 and if
 self.activityGraph.isTwoWayTransaction()
 then
 self.contents->one(isRespondingInformationEnvelope())
 else
 not self.contents->exists(isRespondingInformationEnvelope())
 endif

 879

Exactly one Transition MUST lead from the InitialState to the RequestingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrInitialState2RequestingBusinessActivity:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isInitialState())->
 forAll(oclAsType(Pseudostate).outgoing->size()=1 and
 oclAsType(Pseudostate).outgoing->asSequence()
 ->first().target.isRequestingBusinessActivity())

 880

Exactly one Transition MUST lead from a RequestingBusinessActivity to the RequestingInformationEnvelope

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingBusinessActivity2RequInfEnvelope:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence()
 ->first().target.isRequestingInformationEnvelope())

 881

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 76

Exactly one Transition MUST lead from the RequestingInformationEnvelope to the RespondingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingInformationEnvelope2RespondingBusinessActivity:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingInformationEnvelope())->
 forAll(oclAsType(ObjectFlowState).outgoing->size()=1 and
 oclAsType(ObjectFlowState).outgoing->asSequence
 ->first().target.isRespondingBusinessActivity())

 882

Exactly one Transition MUST lead from the RespondingBusinessActivity to the RespondingInformationEnvelope (only two
way business transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRespondingBusinessActivity2RespondingInformationEnvelope:
 self.activityGraph.isTwoWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence
 ->first().target.isRespondingInformationEnvelope())

 883

Exactly one Transition MUST lead from the RespondingInformationEnvelope to the RequestingBusinessActivity
(only two way business transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRespondingInformationEnvelope2RequestingBusinessActivity:
 self.activityGraph.isTwoWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingInformationEnvelope())->
 forAll(oclAsType(ObjectFlowState).outgoing->size()=1 and
 oclAsType(ObjectFlowState).outgoing->asSequence
 ->first().target.isRequestingBusinessActivity())

 884

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 77

885

There MAY be a Transition from RespondingBusinessActivity to RequestingBusinessActivity (only for one way business
transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrPossibleRespondingInformationEnvelope2RequestingBusinessActivity:
 self.activityGraph.isOneWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 (oclAsType(ActionState).outgoing->asSequence
 ->first().target.isRequestingBusinessActivity() or
 oclAsType(ActionState).outgoing->isEmpty()))

 886

One Transition MUST lead from the RequestingBusinessActivity to each FinalState.

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingBusinessActivity2FinalState:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence
 ->first().target.isFinalState())

 887

Each RequestingInformationEnvelope and each RespondingInformationEnvelope MUST have a classifier, which MUST itself
be a class and stereotyped as InformationEnvelope

package Behavioral_Elements::Activity_Graphs
context ObjectFlowState

inv ObjectFlowStateHasClassifier:
 (self.isRequestingInformationEnvelope() or
 self.isRespondingInformationEnvelope()) implies
 self.type.oclAsType(ClassifierInState).type.isInformationEnvelope()

 888

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 78

889 5.3.2.4 Example (informative)

ad Place Order

:Seller

«BusinessTransactionSwimlane»

:Buyer

«BusinessTransactionSwimlane»

«RequestingBusinessActivity»
submit Order

«RespondingBusinessActivity»
process Order

«RequestingInformationEnvelope»
:OrderEnv elope

«RespondingInformationEnvelope»
:OrderResponseEnv elope

Success

Failure

 890

891 Figure 32 BusinessInteractionView (BusinessTransactionView) Example: PlaceOrder BusinessTransaction (ActivityGraph)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 79

5.3.3 Business Information View 892

893 5.3.3.1 Conceptual Description (informative)

class BusinessInformationView - Conceptual

InformationEntity

InformationEnvelope

0..*+body 1..*+header 0..1

 894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

Figure 33 BusinessInformationView (BusinessTransactionView) Conceptual Overview

A business information view is a container of artifacts that describe the information exchanged in an
interaction. We already mentioned before that RequestingInformationEnvelope and
RespondingInformationEnvelope are of type InformationEnvelope. An information envelope serves as a
cover for all the information exchanged between the requesting business activity and the responding
business activity or vice versa, respectively. The information included in the envelope is structure by
classes that are stereotyped as InformationEntity. Information entities might be recursively nested. Thus
there is a unary composition hierarchy added to InformationEntity. An information envelope is built by
zero or one header and one or more bodies. Both header and body are presented as information entities. It
follows, that an InformationEnvelope is composed of exactly zero or one InformationEntity with the
rolename header and of one or more InformationEntities with the rolename body. An
InformationEnvelope is a specialization of an InformationEntity that fulfills all the rules mentioned for the
information envelope as well.

The current UMM foundation module does not define any rules on how to build information entities. All
methodologies and rules to build good quality class diagrams do also apply to model an information
envelope and its contents. Modelers who want to use UN/CEFACT’s Core Components might do so as
well - it is only important that all resulting classes no matter what type of Core Component are
stereotyped as InformationEntity. However, there is a specialization module – the Core Component UML
Profile – on the way in order to better support the modeling of business information by Core Components.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 80

916 5.3.3.2 Stereotypes and Tag Definitions (normative)

cd BusinessInformation - Abstract Syntax

Class
RegistryObject

InformationEntity

+ isAuthenticated: boolean
+ isConfidential: boolean
+ isTamperProof: boolean

InformationEnvelope

917
918
919

Figure 34 BusinessInformationView (BusinessTransactionView) Abstract Syntax

Stereotype InformationEntity

Base Class Class

Parent N/A

An information entity realizes structured business information that is exchanged between authorized roles
performing activities in a business transaction. Information entities include or reference other information
entities through associations.

Description

isConfidential

Tag Definition

Type Boolean

Multiplicity 1

Description If the flag is set, the information entity is encrypted so that unauthorized parties
cannot view the information.

isTamperProof

Type Boolean

Multiplicity 1

Description If the flag is set, the information entity has an encrypted message digest that can be
used to check if the message has been tampered with. This requires a digital
signature (sender’s digital certificate and encrypted message digest) associated with
the document entity.

isAuthenticated

Type Boolean

Multiplicity 1

Description If the flag is set, there is a digital certificate associated with the document entity.
This provides proof of the signer’s identity.

 920

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 81

921
Stereotype InformationEnvelope

Base Class Class

Parent InformationEntity

An information envelope is a container for information entities. The information envelope is a
specizalization of the information entity. It extends the concept of the information entity by the fact that it
includes exactly one information entity that takes on the role of a header and at least one information entity
that takes on the role of a body. Furthermore the information exchanged in a business transaction, i.e. a
requesting business information and a responding business information is always of type information
envelope.

Description

Inherited tagged values:

Tag Definition - isConfidential
- isTamperProof
- isAuthenticated

 922

923 5.3.3.3 Constraints (normative)

A BusinessInformationView package must contain only InformationEntities and InformationEnvelopes and no other elements.

package Foundation::Core
context Class

inv AllowedElementsInBusinessInformationView:
 self.isBusinessInformationView() implies
 self.contents->forAll(a | a.isInformationEntity() or
 a.isInformationEnvelope())

 924

An InformationEnvelope MUST have zero or one association to an InformationEntity with role name header

package Foundation::Core
context Class

inv InformationEnvelopeHasHeader:
 self.isInformationEnvelope() implies
 self.associations->size() < 1 and
 self.associations->forAll(a | a.connection->size() = 2 and
 a.allConnections->one(participant.isInformationEntity() and
 AssociationEndRole.name = 'header'))

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 82

925

An InformationEnvelope MUST have at least one associated InformationEntity with role name body

package Foundation::Core
context Class

inv InformationEnvelopeHasBodies:
 self.isInformationEnvelope() implies
 self.associations->forAll(a | a.connection->size() = 2 and
 a.allConnections->exists(participant.isInformationEntity() and
 AssociationEndRole.name = 'body'))

 926

An InformationEntity MAY be composed of other InformationEntities

package Foundation::Core
context Class

inv contentsOfInformationEntitiy:
 self.isInformationEntity() implies
 self.associations->
 forAll(a | a.allConnections->exists(isAggregate()) and
 a.allConnections->exists(participant.isInformationEntity()))

 927

928 5.3.3.4 Example (informative)

cd Order Information

«InformationEnvelope»
OrderEnv elope

«InformationEntity»
OrderHeader

+ ...:

+header

929
930

+body

«InformationEntity»
OrderBody

+ ...:

Figure 35 BusinessInformationView (BusinessTransactionView) Example: OrderEnvelope (ClassDiagram) - conceptual

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 83

5.3.4 OCL methods used in all packages of the BTV (normative) 931
932

OCL-Methods

package Foundation::Core
context ModelElement

--Predefined method whichs evaluates, if the given Modelelement
--has a stereotype equal to the passed name
def :
let hasStereotype (st : String) : Boolean =
 self.stereotype->select(self.name = st)->notEmpty()

--Predefined method whichs evaluates, if the given element
--has the stereotype 'BusinessTransaction'
def :
let isBusinessTransaction() : Boolean =
 self.oclIsKindOf(ActivityGraph) and
 self.hasStereotype('BusinessTransaction')

--Predefined method whichs evalutes, if the given element
--has the stereotype 'BusinessInteraction'
def :
let isBusinessInteraction() : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('BusinessInteraction')

--Predefined method whichs evaluates, if the given element
--is a subtype of 'BusinessInteractionBehavior'
def :
let isBusinessInteractionBehavior() : Boolean =
 self.oclIsKindOf(ActivityGraph) and
 self.hasStereotype('BusinessTransaction')

--Predefined method whichs evaluates, if the given element
--is a 'BusinessChoreography'
def :
let isBusinessChoreography() : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('BusinessChoreography')

--Predefined method which evaluates, if the
--ActivityGraph is a BusinessCollaborationProtocol
def:
let isBusinessCollaborationProtocol() : Boolean =
 self.oclIsKindOf(ActivityGraph) and
 self.hasStereotype('BusinessCollaborationProtocol')

--Predefined method which evaluates, if the
--ActivityGraph is a subtype of
--BusinessChoreographyBehavior
def:

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 84

let isBusinessChoreographyBehavior() : Boolean =
 self.oclIsKindOf(ActivityGraph) and
 self.hasStereotype('BusinessCollaborationProtocol')

--Predefined method which evaluates, if the given element
--has the stereotype 'RequestingBusinessActivity' and
--if its type is ActionState
def :
let isRequestingBusinessActivity() : Boolean =
 self.oclIsKindOf(ActionState) and
 self.hasStereotype('RequestingBusinessActivity')

--Predefined method which evaluates, if the given element
--has the stereotype 'RespondingBusinessActivity' and
--if its type is ActionState
def :
let isRespondingBusinessActivity() : Boolean =
 self.oclIsKindOf(ActionState) and
 self.hasStereotype('RespondingBusinessActivity')

-- Returns true if the element is located in a partition and
-- its stereotype is 'BusinessTransactionSwimlane'
def :
let isBusinessTransactionSwimlane() : Boolean =
 self.hasStereotype('BusinessTransactionSwimlane')
 and self.oclIsKindOf(Partition)

-- Returns true if the type of the element
-- is 'PseudoKindState' and its Pseudostatekind is pk_initial
def :
let isInitialState() : Boolean =
 self.oclIsKindOf(Pseudostate) and
 self.oclAsType(Pseudostate).kind = PseudostateKind::initial

-- Returns true if the type of the element is 'FinalState'
def:
let isFinalState() : Boolean =
 self.oclIsKindOf(FinalState)

-- Returns true if the type of the element
-- is 'PseudoKindState' and its Pseudostatekind
-- is pk_choice
def:
let isChoice() : Boolean =
 self.oclIsKindOf(Pseudostate) and
 self.oclAsType(Pseudostate).kind = PseudostateKind::choice

-- Returns true if the type of the element
-- is 'PseudoState' and its Pseudostatekind
-- is pk_fork
def:
let isFork() : Boolean =
 self.oclIsKindOf(Pseudostate) and
 self.oclAsType(Pseudostate).kind = PseudostateKind::fork

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 85

-- Returns true if the type of the element
-- is 'PseudokindState' and its Pseudostatekind
-- is pk_choice
def:
let isJoin() : Boolean =
 self.oclIsKindOf(Pseudostate) and
 self.oclAsType(Pseudostate).kind = PseudostateKind::join

--Returns true if the given element has a tagged value named 'tag' with
--a value 'value'
def :
let hasTaggedValue (tag : String, value : String) : Boolean =
 self.taggedValue->select(name = tag)->select(dataValue = value)-
>notEmpty()

--Returns true if the element has a tagged value named 'BusinessTransaction'
--with a value 'NotificationActivity' or 'InformationDistributionActivity'
def :
let isOneWayTransaction() : Boolean =
 self.hasTaggedValue('BusinessTransactionType','NotificationActivity')
 or
 self.hasTaggedValue('BusinessTransactionType','InformationDistributionActi
vity')

--Returns true if the element has a tagged value name 'BusinessTransaction'
--with a value 'QueryResponseActivity' or 'RequestResponseActivity' or
--'CommercialTransactionActivity' or 'RequestConfirmActivity'
def :
let isTwoWayTransaction() : Boolean =
 self.hasTaggedValue('BusinessTransactionType','QueryResponseActivity')
 or
 self.hasTaggedValue('BusinessTransactionType','RequestResponseActivity')
 or
 self.hasTaggedValue('BusinessTransactionType','CommercialTransactionActivi
ty')
 or
 self.hasTaggedValue('BusinessTransactionType','RequestConfirmActivity')

-- Returns true if the stereotype of the given element is
--'BusinessCollaborationActivity'
-- and if the type of the element is ActionState
def:
let isBusinessCollaborationActivity() : Boolean =
 self.hasStereotype('BusinessCollaborationActivity') and
 self.oclIsKindOf(ActionState)

-- Returns true if the stereotype of the given element is
--'BusinessTransactionActivity'
-- and if the type of the element is ActionState
def:
let isBusinessTransactionActivity() : Boolean =
 self.hasStereotype('BusinessTransactionActivity') and
 self.oclIsKindOf(ActionState)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 86

-- Returns true if the type of the element is Transition
def:
let isTransition() : Boolean =
 self.oclIsKindOf(Transition)

-- Returns true if the given element is an element of an Acitivity Graph
-- (InitialState, Choice, Fork, Join, Transition or FinalState)
def:
let isPseudoStateOrFinalStateOrTransition() : Boolean =
 isInitialState() or
 isChoice() or
 isFork() or
 isJoin() or
 isFinalState()

--Returns true if a package is stereotyped as BusinessTransactionView
def:
let isBusinessTransactionView() : Boolean =
 self.hasStereotype('BusinessTransactionView') and
 oclIsKindOf(Package)

--Returns true if a package is stereotyped as BusinessChoroeographyView
def:
let isBusinessChoreographyView() : Boolean =
 self.hasStereotype('BusinessChoreographyView') and
 oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
--'BusinessInformationView'
-- and if the type of the element is Package
def :
let isBusinessInformationView() : Boolean =
 self.hasStereotype('BusinessInformationView') and
 self.oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
--'BusinessInteractionView'
-- and if the type of the element is Package
def :
let isBusinessInteractionView() : Boolean =
 self.hasStereotype('BusinessInteractionView') and
 self.oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
'InformationEntitiy'
-- and if the type of the element is Class
def :
let isInformationEntity() : Boolean =
 self.hasStereotype('InformationEntity') and
 self.oclIsKindOf(Class)

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 87

-- Returns true if the association type of an association end is composite
def:
let isComposition() : Boolean =
 self.oclIsKindOf(AssociationEnd) and
 self.oclAsType(AssociationEnd).aggregation = AggregationKind::composite

-- Returns true if the association type of an association end is aggregation
def:
let isAggregate() : Boolean =
 self.oclIsKindOf(AssociationEnd) and
 self.oclAsType(AssociationEnd).aggregation = AggregationKind::aggregate

-- Returns true if the element is a partition
--and stereotyped as BusinessTransactionSwimlane
def :
let isUMMTransactionSwimlane() : Boolean =
 self.oclIsKindOf(Partition) and
 self.hasStereotype('BusinessTransactionSwimlane')

--Returns true if the stereotype of the element is
--'InformationEnvelope' and its type is Class
def :
let isInformationEnvelope() : Boolean =
 self.hasStereotype('InformationEnvelope') and
 oclIsKindOf(Class)

--Returns true if the stereotype of the element
-- is 'RequestingInformationEnvelope'
def :
let isRequestingInformationEnvelope() : Boolean =
 self.hasStereotype('RequestingInformationEnvelope') and
 oclIsKindOf(ObjectFlowState)

--Returns true if the stereotype of the element
-- is 'RespondingInformationEnvelope'
def :
let isRespondingInformationEnvelope() : Boolean =
 self.hasStereotype('RespondingInformationEnvelope') and
 oclIsKindOf(ObjectFlowState)

--Predefined method which evaluates, if the given element
--has the stereotype 'mapsTo'
def :
let isMapsToDependency() : Boolean =
 self.oclIsKindOf(Dependency) and
 self.hasStereotype('mapsTo')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationUseCase'
def :
let isBusinessCollaborationUseCase() : Boolean =
 self.oclIsKindOf(UseCase) and
 self.hasStereotype('BusinessCollaborationUseCase')

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 88

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionUseCase'
def :
let isBusinessTransactionUseCase() : Boolean =
 self.oclIsKindOf(UseCase) and
 self.hasStereotype('BusinessTransactionUseCase')

--Predefined method which evaluates, if the given element
--has the stereotype 'AuthorizedRole'
def :
let isAuthorizedRole() : Boolean =
 self.oclIsKindOf(Actor) and
 self.hasStereotype('AuthorizedRole')

 933

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 89

Copyright Statement 934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

Copyright © UN/CEFACT 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to UN/CEFACT except as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by
UN/CEFACT or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

UN/CEFACT – UMM Foundation Module Version 1.0 – Technical Specification 90

	1 About this Document
	1.1 Status of this Document
	1.2 Revision History
	1.3 Document Context
	2 Project Team
	2.1 Disclaimer
	2.2 Contact
	2.3 Project Team Participants

	3 Introduction
	3.1 Audience
	3.2 Related Documents
	3.3 UN/CEFACT’s Modeling Methodology (UMM): Overview
	3.4 Objectives
	3.4.1 Goals of the Technical Specification
	3.4.2 Requirements
	3.4.3 Caveats and Assumptions

	3.5 Structure of the UMM Foundation Module

	4 Dependency on other UMM modules (normative)
	5 UMM Foundation Module
	5.0 Foundation Module Management
	5.0.1 Conceptual Description (informative)
	5.0.2 Stereotypes and Tag Definitions (normative)
	5.0.3 Constraints (normative)
	5.0.4 OCL methods used in the UMM Foundation Module Management (normative)

	5.1 Business Domain View
	5.1.1 Conceptual Description (informative)
	5.1.2 Stereotypes and Tag Definitions (normative)
	
	5.1.3 Constraints (normative)
	5.1.4 Example (informative)
	5.1.5 OCL methods used in all packages of the BDV (normative)

	5.2 Business Requirements View
	5.2.0 Sub-Views in the Requirements View
	5.2.0.1 Conceptual Description (informative)
	5.2.0.2 Stereotypes and Tag Definitions (normative)
	
	5.2.0.3 Constraints (normative)

	5.2.1 Business Process View
	5.2.1.1 Conceptual Description (informative)
	5.2.1.2 Stereotypes and Tag Definitions (normative)
	5.2.1.3 Constraints (normative)
	5.2.1.4 Example (informative)

	5.2.2 Business Entity View
	5.2.2.1 Conceptual Description (informative)
	5.2.2.2 Stereotypes and Tag Definitions (normative)
	5.2.2.3 Constraints (normative)
	
	5.2.2.4 Example (informative)

	5.2.3 Partnership Requirements View
	5.2.3.1 Conceptual Description (informative)
	5.2.3.2 Stereotypes and Tag Definitions (normative)
	5.2.3.3 Constraints (normative)
	5.2.3.4 Example (informative)

	5.2.4 OCL methods used in all packages of the BRV (normative)

	5.3 Business Transaction View
	5.3.0 Views in the Transaction View
	5.3.0.1 Conceptual Description (informative)
	5.3.0.2 Stereotypes and Tag Definitions (normative)
	5.3.0.3 Constraints (normative)

	5.3.1 Business Choreography View
	5.3.1.1 Conceptual Description (informative)
	5.3.1.2 Stereotypes and Tag Definitions (normative)
	5.3.1.3 Constraints (normative)
	5.3.1.4 Example (informative)

	5.3.2 Business Interaction View
	5.3.2.1 Conceptual Description (informative)
	5.3.2.2 Stereotypes and Tag Definitions (normative)
	5.3.2.3 Constraints (normative)
	5.3.2.4 Example (informative)

	5.3.3 Business Information View
	5.3.3.1 Conceptual Description (informative)
	5.3.3.2 Stereotypes and Tag Definitions (normative)
	5.3.3.3 Constraints (normative)
	5.3.3.4 Example (informative)

	5.3.4 OCL methods used in all packages of the BTV (normative)

	Copyright Statement

