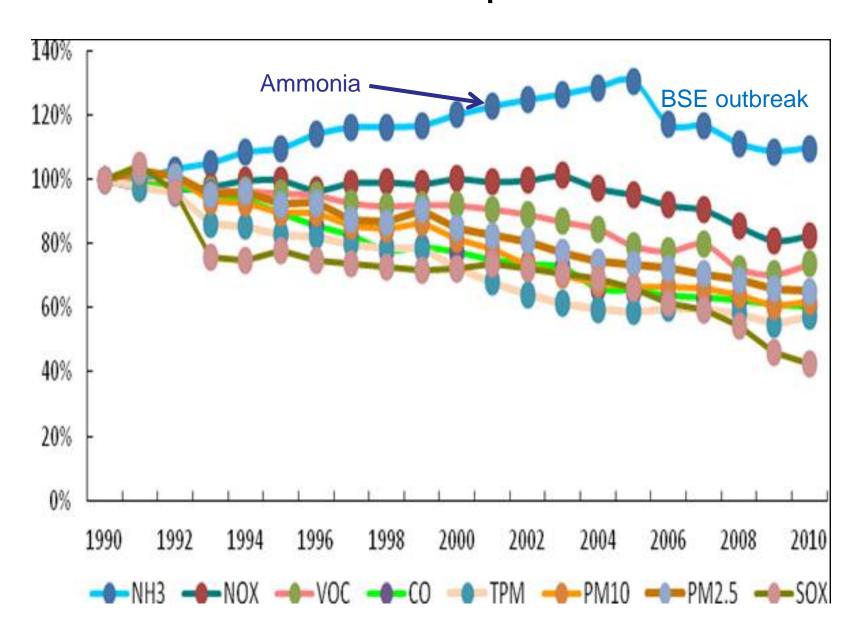


Agriculture et Agroalimentaire Canada

Approaches to Reducing Ammonia Emissions in Canada

Shabtai Bittman
Agriculture and Agri-Food Canada


Sub-title:

Mitigating ammonia in the absence of government policies: the Canadian experience

Why are there no agricultural policies for ammonia abatement in Canada?

- 1. Farm practices are under provincial jurisdiction; difficult to have national regulations.
- 2. Ammonia has lower profile than nitrate in ground water, phosphorous in surface water, or GHG emissions
- 3. Overlooked synergies:
 - e.g. ammonia is main N loss pathway from farms so need abatement to improve N efficiency, and as N is the main energy input on many farms, abatement will reduce energy conumption.

Trend in emissions of air pollutants in Canada

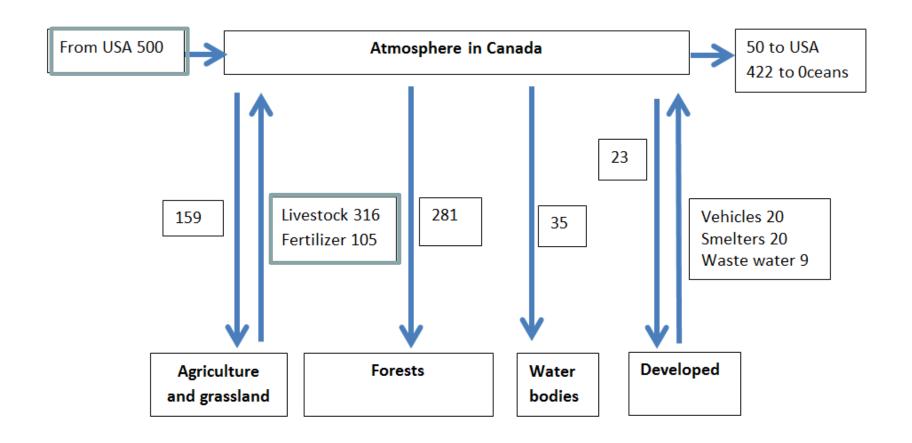
Ammonia emissions in Canada- domestic food consumption and export

	Per consumed	Due to food	Due to
Commodity		consumption	exports
	protein (kg/kg)	(Gg/year)	(Gg/year)
Cereal products	0.026	4.8	33
Dairy products	0.21	36	0.45
Eggs	0.15	4.3	0.45
Pulses and nuts	0.004	< 0.19	na
Beef	1.3	115	78
Pork	0.43	28	49
Poultry	0.18	14	2
Vegetables	0.1	<4.5	na¹
Fruits, sugars, oils, fish, beverages		<0.2	na¹
Totals		202	163

Ammonia emissions in Canada- sectors and regions

Prov.	Poultry	Beef	Dairy	Swine	Fertilizer	Provincial Share of National Emissions
		%				
ВС	18.8	45.6	21.3	4.2	10.0	3.6
AB	1.8	70.0	4.4	7.9	20.0	27.3
SK	1.0	51.1	1.5	7.2	39.4	21.4
MB	3.2	44.0	4.2	22.0	26.0	11.4
ON	9.0	32.9	20.7	23.2	15.9	18.6
QC	7.4	18.5	27.7	35.4	12.9	14.8
NB	14.8	27.0	25.9	16.7	16.7	0.6
NS	19.7	30.0	27.4	14.8	8.4	0.7
PE	2.0	32.3	21.7	22.3	22.3	0.7
NF	16.9	11.2	61.5	2.3	7.7	0.1
Total	4.8	45.5	11.1	16.1	22.3	100
			Total National Emissions (tonnes NH3 /yr)			440000

Ammonia emissions in Canada- sectors and farm activities (kt N/yr)


Estimates	Beef	Pigs	Dairy	Poultry	Total
Total excretion	423.0	130.0	91.8	35.3	680.1
Lost as NH ₃ from pasture	19.6	0.0	1.8	0.0	21.4
Retained on pasture	193.0	0.0	17.2	0.0	210.2
Lost as NH ₃ from confinement housing	90.1	37.8	15.4	9.4	152.7
Transferred to storage as slurry	9.6	87.7	40.3	3.1	140.7
Transferred to storage as solid	111.0	4.3	17.1	22.8	155.2
Lost as NH ₃ from storage	11.3	5.2	5.8	1.2	23.5
Transferred to land as slurry	9.4	83.5	39.0	3.0	134.9
Transferred to land as solid	99.7	3.2	12.6	21.8	137.3
Lost as NH ₃ after land spreading	48.6	26.4	24.4	10.8	110.2
Retained on land after spreading	60.5	60.3	27.2	13.9	161.9
Lost as NH ₃ from all production sources	170.0	69.5	47.5	21.3	308.3
Proportion of N emitted as NH ₃ (%)	40.2	53.5	51.7	60.3	45.3
Commercial fertilizer					100

408

Adapted from Sheppard & Bittman, 2013

Total agricultural NH₃

Transport into Canada

Some examples of current farm practices that reduce ammonia emissions in Canada

Practices that reduce ammonia emissions in Canada

1. Use of legumes and pulses in crop rotations to improve income, yield and soil for next crop

Nationally, N fixation > commercial N fertilizer

Practices that reduce ammonia emissions in Canada

2. Side-banding (injection) of urea-based fertilizers to improve fertilizer efficiency and reduce application costs has very low emissions (~5%)

Almost universal for spring grains in western Canada, but cannot be used for winter cereals, forages or with high N rates.

Fertilizer application practices (%) for different N forms in Eastern and Western Canada

	Nitrogen Fertilizers			
Method of application	Urea	UAN	Anhydrous NH ₃	Other
Eastern Canada				
Broadcast	16	12	0	14
Incorporated or partially injected	60	49	0	43
Fully injected	25	39	100	43
Western Canada				
Broadcast	6	7	0	21
Incorporated or partially injected	13	26	0	50
Fully injected	82	68	100	30

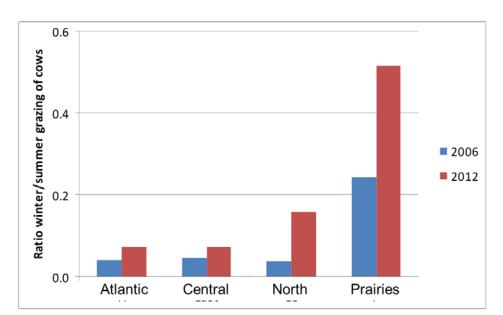
from Sheppard &Bittman, 2011

Practices that reduce ammonia emissions in Canada

3. Low emission application of pig slurry to reduce odour and phosphorous runoff- especially western Canada

Not widely adopted by dairy because: hard to do on on forages, smaller farms, and there are fewer complaints against smaller dairy farms.

Farms (%) applying slurry manure by broadcasting, and low emission methods including surface banding shallow injection and deep injection


	Atlantic	On/ QC	Boreal	Prairie	Pacific	Canada
Dairy						
broadcast	82	82	83	70	85	80
surface bands	10	6	8	2	1	5
shallow injection	2	5	4	12	3	6
deep injection	0	3	0.0	14	0	4
Swine						
broadcast	76	65	56	45		59
surface bands	16	10	13	4		9
shallow injection	2	12	9	16		12
deep injection	1	9	17	31		16

Practices that reduce ammonia emissions in Canada

4. Grazing widely used on beef cow-calf operations to reduce operating cost; reduces emissions from housing, storage and manure spreading.

Note: increasing use of winter grazing

Practices that reduce ammonia emissions in Canada

5. Coincidental abatement

 Cold weather and surface crusts reduce emissions from liquid manure especially form dairies

Other 'Ammonia Abatement Measures' in Canada

Direct

- Multiple phase feeding for pigs and chickens target protein intake (cost saving)
- Increasing milk yield per cow reduces excretion rate (feed cost saving)

Indirect

- Increasing farm sizes-increased use of slurry and greater use of manure contractors.
- Precision agriculture reduces N inputs and losses
- Large, fast equipment enables timely field operations
- Use of urease inhibitors (limited agricultural uses yet)

Potential for additional low cost ammonia abatement in Canada- targets for policies?

Other low-cost BMPs could increase this to a saving of 96 kt NH₃ year⁻¹ or 26% of present emissions (costs less certain but assumed low)

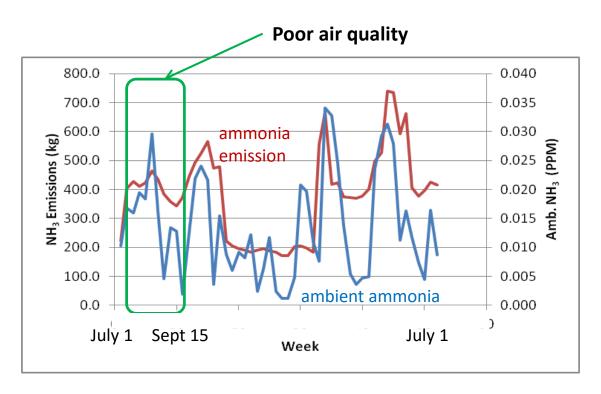
Practices that reduce ammonia

Countertrends

- More reduced tillage (less opportunity for incorporation)
- Reduced grazing on dairy farms
- More loose housing on dairy farms: greater emitting surface and les targeted feeding
- Shorter cow lifespan hence more replacements must be maintained
- Possibly more overfeeding of protein (we are testing this hypothesis)

Strategic mitigation policy (harm reduction)-can it work?

Ammonia: seasonal effects on air quality near Vancouver Canada

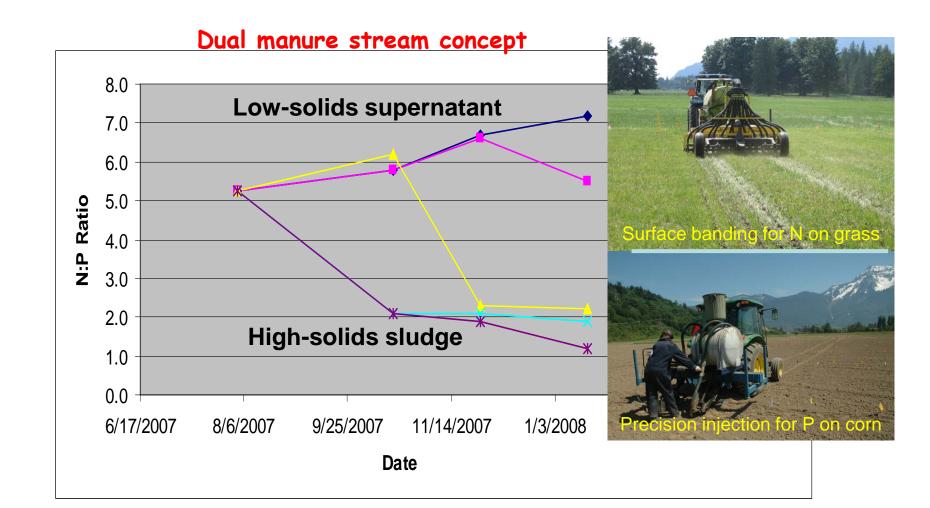


Winter

Late summer

Gray haze due to fine particles made of ammonia for agriculture and nitrate form vehicles --- reduces visibility and hurts tourism

Strategic ammonia policy to mitigate poor air quality - can it work?



Ammonia emissions (red) and ambient atmospheric concentrations (blue) over 12 month period

Abatement opportunities using integration

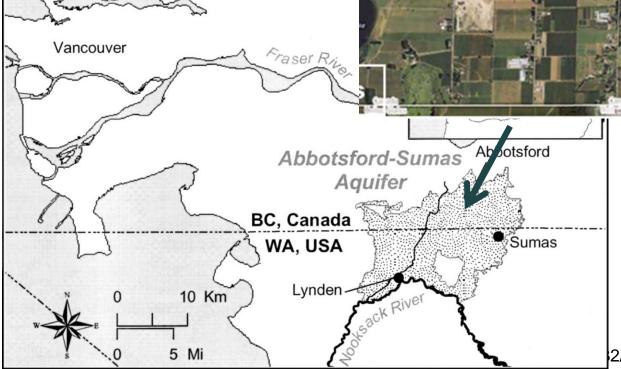
Manure separation for balancing nutrients: achieves for dual ammonia abatement:

- Liquid fraction banded (for N) on grass low emission due to rapid infiltration
- Sludge fraction (for P) corn by precision closed injection

Cross media

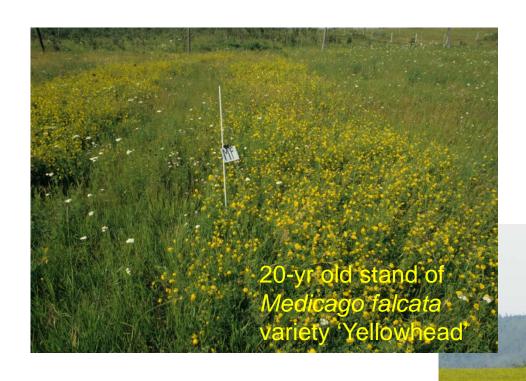
Ammonia mitigation may cause pollution swapping (leaching and N₂O)

e.g. Manure injection


Conclusion:

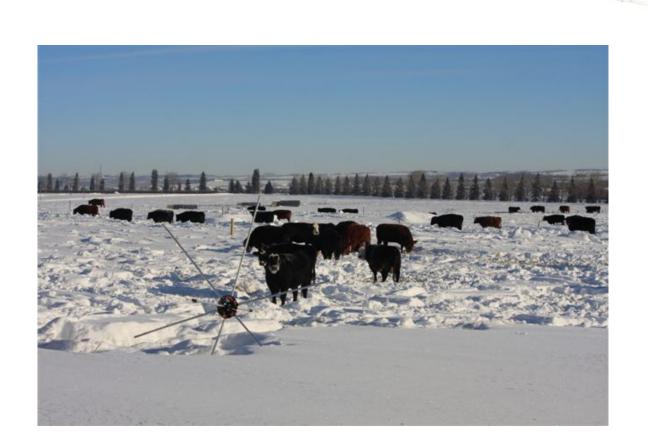
- The drive to efficiency often helps with mitigation (eg precision feeding and fertilizing)
- Emission reduction may piggy-back on more dominant issues (injection of pig manure)
- It is important to understand the emission inventory (eg in Canada emissions from storage are low)
- There are impediments (need large reductions to effect change) but equally there are opportunities to target impact
- Need for multipurpose technology with low uptake threshold such as low emission applicators that can be home built

Abbotsford Sumas Aquifer

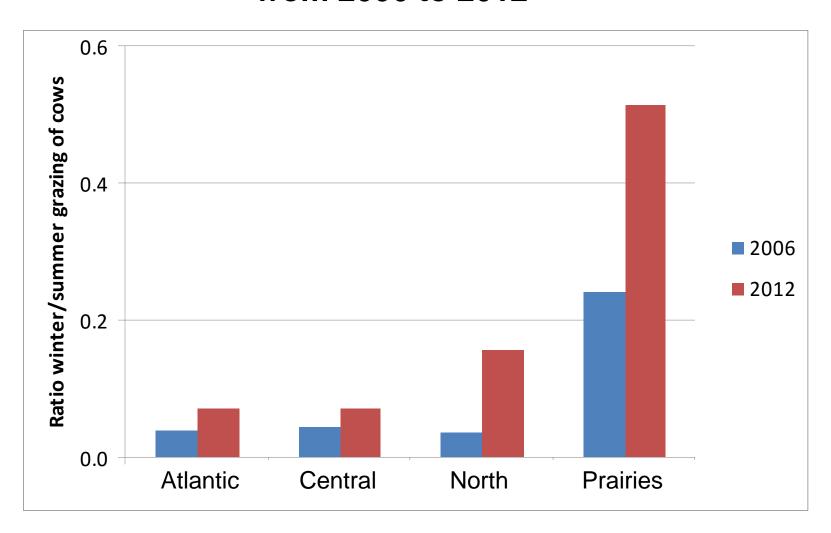


2/3/789f1.jpeg

Legumes are important source of N in extensive pastureland


Seed production field

for 'Yellowhead'


Search for persistent alfalfa for western pastures

Winter grazing of beef cows/calves in Canada

Increase in winter grazing by (pregnant) beef cows from 2006 to 2012

Potential low cost reductions

(new measures-current measures)

Current practice	New practices	Stage-specific reduction (%)	Reduction after all stages within each sector (%)	National cost ner
Current practices	Only BMPs with known low abatement costs: slurry storage and slurry spreading. change in layer housing			\$13M or \$0.80 per kg NH ₃
Current practices	All BMPs listed with assumed low costs		26	Unknown

Practices that reduce ammonia

Increasing dairy farm sizes leads to increased use of liquid manure with more available abatement measures

Size (quartile)	Beef	Dairy	Pigs	Layer
1	13 (1000)	85 (195)	99 (3,300)	34 (70,000)
2	2.6 (200)	77 (94)	99 (2,200	31 (26,000)
3	3.9 (80)	72 (65)	98 (1600)	43 (13.000)
4	4.2 (30)	64 (40)	88 (940)	61 (7,600)