# 全球化学品统一分类和标签制度(全球统一制度)



# 说明

本出版物中所用的名称以及材料的编制方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或界线的划分表示任何意见。

ST/SG/AC.10/30

联合国版权所有©, 2003年

版权所有。

未经联合国事先书面许可,本出版物任何部分不得为销售目 的重印、存入检索系统或以电子、静电、磁带、机械、影印或其 他形式或方式传送。

联合国

出售品编号: E.03.II.E.25

ISBN 92-1-116840-6

# 前言

- 1. 本文件说明的《全球化学品统一分类和标签制度》是十多年工作的成果。参加这项工作的有来自众多国家、国际组织和利益有关者组织的许多个人。他们的工作覆盖从毒理学到消防的范围广泛的专业,而且最终要求广泛的妥协诚意和意愿,以便实现这种制度。
- 2. 工作始于这样一个前提,即应统一现行的制度以便制定一种单一的、全球统一的制度来处理化学品的分类、标签和安全数据单。这不是一种全新的理念,因为在很大程序上运输部门已经在对物理危险和急性毒性的分类和标签制度进行统一,它是以联合国经济及社会理事会危险货物运输问题专家委员会的工作为基础的。但在工作场所和消费部门尚未实现统一,而且各国的运输要求与该国其他部门的要求经常不一致。
- 3. 推动完成这项工作的国际授权在 1992 年联合国环境与发展会议(环发会议)上通过,它反映在《21世纪议程》第 19.27 段。

"可行的话,应于 2000 年之前建立全球统一和配套的危害分类和标签制度,包括物质的安全数据单和易懂的符号在内"。

- 4. 工作在组织间健全管理化学品方案(化学品方案)统一化学分类制度协调小组主持下协调和管理。完成这项工作的技术联络中心是国际劳工组织(劳工组织),经济合作与发展组织(经合发组织);和联合国经济及社会理事会危险货物运输问题专家小组委员会。
- 5. 2001 年完成后,工作即由化学品方案移交联合国经济及社会理事会新成立的全球统一分类制度专家小组委员会,它由理事会 1999 年 10 月 26 日第 1995/65 号决议设立,作为前危险货物运输问题专家委员会的一个附属机构,该委员会同时更名为"危险货物运输和全球化学品统一分类和标签制度专家委员会"。委员会及其各小组委员会以两年为期开展工作,而且全球统一分类制度专家小组委员会的第一项任务是将全球统一制度提供给全球使用和适用。本文件根据化学品方案的原始建议拟订并经委员会第一届会议核准(2002 年 12 月 11 日至 13 日),意在作为全球执行全球统一制度的初始基础。
- 6. 不过,该制度应是动态的,并应在执行过程中随着经验的积累不断修订并使之更加有效。各国和区域政府是本文件的主要对象,但它也包含充分的背景和指导意见,供业界最终落实所通过的本国要求的人们参考。全球统一分类制度专家小组委员会负责维持全球统一制度和促进它的执行。它将随着需要而提供补充指导意见,同时又维持制度的稳定性以鼓励采用它。本文件将在它的主持下进行修订和更新,以反映在将各项要求落实到国家、区域和国际法的过程中所取得的国家、区域和国际经验,以及从事分类和标签工作的人员的经验。
- 7. 在 2002 年 9 月 4 日在约翰内斯堡通过的《行动计划》第 22 (c) 段中,可持续发展问题世界首脑会议鼓励各国尽早执行新的全球统一制度以期让该制度到 2008 年全面运转。有鉴于此,委员会希望关心化学品安全的国家和国际组织将在不久的将来采用它。如能提供关于化学品、它们的危险和保护人民的方法的信息,将为安全管理化学品的国家方案提供基础。世界各国广泛管理化学品,将为全球人口和环境创造更安全的条件,同时又能继续享受利用化学品的好处。此外,通过提高从事国际贸易的公司必须达到的有关化学品危险分类和公示的国家要求的一致性,统一还具有促进国际贸易的好处。

- 8. 本出版物由联合国欧洲经济委员会(欧洲经委会)秘书处编写,该秘书处为经济及社会理事会的化学品分类和标签专家小组委员会提供秘书处服务。
- 9. 如有补充信息 (包括本出版物的更正),可访问欧洲经委会运输处网站: http://www.unece.org/trans/danger/danger.htm。

# 目 录

| 第1部分   | 导言                |
|--------|-------------------|
| 第 1.1  | 章 全球统一制度的目的、范围和适用 |
| 第 1.2  | 章 定义和缩略语          |
| 第 1.3  | 章 危险物质和混合物分类      |
| 第 1.4  | 章 危险公示:标签         |
| 第 1.5  | 章 危险公示:安全数据单      |
| 第2部分   | 物理危险              |
| 第 2.1  |                   |
| 第 2.2  | 章 易燃气体            |
| 第 2.3  | 章 易燃气溶胶           |
| 第 2.4  | 章 氧化气体            |
| 第 2.5  | 章 高压气体            |
| 第 2.6  | 章 易燃液体            |
| 第 2.7  | 章 易燃固体            |
| 第 2.8  | 章 自反应化学品          |
| 第 2.9  | 章 发火液体            |
| 第 2.10 | 0 章 发火固体          |
| 第 2.11 | 1 章 自热化学品         |
| 第 2.12 | 2章 遇水放出易燃气体的化学品   |
| 第 2.13 | 3 章 氧化性液体         |
| 第 2.14 | 4章 氧化性固体          |
| 第 2.15 | 5章 有机过氧化物         |
| 第 2.10 | 6章 金属腐蚀剂          |

# 目 录 (续)

| 第3部分 健康  | <b>東和环境危险</b>          |
|----------|------------------------|
| 第 3.1 章  | 急性毒性                   |
| 第 3.2 章  | 皮肤腐蚀/刺激                |
| 第 3.3 章  | 严重眼损伤/眼刺激              |
| 第 3.4 章  | 呼吸或皮肤敏化作用              |
| 第 3.5 章  | 生殖细胞致突变性               |
| 第 3.6 章  | 致癌性                    |
| 第 3.7 章  | 生殖毒性                   |
| 第 3.8 章  | 特定目标器官系统毒性——单次接触       |
| 第 3.9 章  | 特定目标器官系统毒性——重复接触       |
| 第 3.10 章 | 危害水生环境                 |
| 付件       |                        |
| 附件1      | 标签要素的分配                |
| 附件 2     | 分类和标签汇总表               |
| 附件3      | 防范说明,象形图               |
| 附件4      | 基于伤害可能性的消费产品标签         |
| 附件 5     | 可理解性测试方法               |
| 附件 6     | 全球统一制度标签要素安排样例         |
| 附件 7     | 全球统一制度分类实例             |
| 附件8      | 水生环境危害指导               |
| 附件 9     | 金属和金属化合物在水生介质中的转化/溶解指导 |

第1部分

导言

# 第1.1章

# 全球化学品统一分类和标签制度 (全球统一制度) 的目的、范围和适用

#### 1.1.1 目的

- 1.1.1.1 利用化学制品提高和改善生活是一种风靡全球的做法。但是这些产品带来好处的同时,也可能给人或环境造成不利的影响。因此,多年来许多国家或组织制定了各种法律或规章,要求通过标签或安全数据单编制和向使用化学品的人传播有关信息。鉴于可用的化学品数目巨大,个别地管理所有这些产品对任何实体而言都是根本不可能办到的。向化学品使用者提供信息会使他们了解这些化学品的特性和危险,并在当地的使用环境下能够实行适当的保护措施。
- 1.1.1.2 现行的这些法律或规章在许多方面是雷同的,但它们的差别也大得足以造成同种产品在不同的国家有着不同的标签或安全数据单。由于危险定义的差异,可能造成某种化学品在一国被认为是易燃品,而在另一国被认为是非易燃品。因此,对于何时或如何在标签或安全数据单上公示危险,世界各地的决定互不相同,而且希望参与国际贸易的公司配备大批的专家,以便跟踪这些法律和规章的变化并编制不同的标签和安全数据单。此外,鉴于发展和维持化学品综合分类和标签制度是一项复杂工作,许多国家根本没有办法可言。
- 1.1.1.3 鉴于化学品全球贸易的范围十分广泛和必须制定国家方案来确保它们的安全使用、运输和处置,各国认识到采用国际统一的做法进行分类和标签可为此类方案提供基础。一旦各国对它们进口或在本国自产的化学品掌握了一致和适当的信息,它们就能综建设控制化学品接触和保护人员与环境的基础设施。
- 1.1.1.4 因此,制定统一制度目标的理由有许多。预计执行全球统一制度后,它将:
  - (a) 通过提供一种国际综合性的危险公示制度,加大对人类健康和环境的保护;
  - (b) 为尚未制定制度的那些国家提供一个公认的框架;
  - (c) 减少试验和评价化学品的必要性; 和
  - (d) 促进其危险度已在国际上得到恰当评估和认定的化学品的国际贸易。
- 1.1.1.5 工作开始时先审查现行的制度和确定工作的范围。许多国家有着某些要求,但下列制度被认为是"主要的"现行制度,并被用作拟订全球统一制度的基础:
  - (a) 美利坚合众国有关工作场所、消费和杀虫剂的制度要求;
  - (b) 加拿大有关工作场所、消费和杀虫剂的要求;

- (c) 欧洲联盟有关物质和制剂分类和标签的指令;
- (d) 《联合国关于危险货物运输的建议书》。
- 1.1.1.6 随着工作的开展,也对其他国家的要求进行了审议,但是主要的任务是寻找办法采纳这些现行制度的最佳方面和制定一种统一制度。开展这项工作的基础是在此进程开始不久通过的商定统一原则:
  - (a) 向工人、消费者、一般公众和环境提供的保护水平,不得由于统一分类和标签制度而有所 降低;
  - (b) 危险分类过程主要指化学元素及其化合物和混合物的内在特性引起的危险,不论是自然的还是合成的<sup>1</sup>;
  - (c) 统一意味着为化学品危险的分类和公示建立一个共同和一致的基础,从而能够选择同运输工具、消费者、工人和环境保护相关的适当的要素;
  - (d) 统一的范围包括危险分类标准和危险公示工具;例如标签和化学安全数据单,其中尤其顾及劳工组织报告<sup>2</sup>认定的四项现行制度;
  - (e) 所有这些制度都需作变动以产生一种单一的全球统一制度; 在转向新制度的过程中应采取 过渡措施;
  - (f) 应当确保有关的国际雇主、工人、消费者组织和其他相关组织参与统一过程;
  - (g) 应当解决目标对象(例如工人、消费者和一般公众)理解化学品危险信息的问题;
  - (h) 根据现行制度已经为化学品的分类所产生的得到验证的数据,在根据统一制度对这些化学 品重新分类时应加以接受;
  - (i) 新的统一分类制度可能要求修改现行化学品试验方法;
  - (j) 有关化学品危险的公示,在按主管当局规定保护机密商业信息的同时,应确保工人、消费者和一般公众的安全和健康及环境的保护。

# 1.1.2 范围

- 1.1.2.1 全球统一制度包括下列要素:
  - (a) 按其健康、环境和物理危险对物质和混合物进行分类的统一标准;和

在某些情况下,还必须考虑到其他特性引起的危险,例如物质或混合物的物理状态(例如,压力和温度)或通过某些化学反应产生的物质特性(例如通过与水接触产生的气体的易燃性)。

<sup>2 1992</sup> 年劳工组织关于《统一危险化学品现行分类和标签制度》任务规模的报告。

- (b) 统一危险公示要素,包括标签和安全数据单的要求。
- 1.1.2.2 本文件按危险类型(例如急性毒性;易燃性)介绍了分类标准和危险公示要素。此外,还制定了每种危险的决定原理。正文中以及附件7中化学品分类的部分例子说明了如何应用标准。还对制度制定过程中提出的有关问题进行了一些探讨,在这些方面据认为需要提供补充指导以执行该制度。
- 1.1.2.3 全球统一制度的范围基于 1992 年联合国环境与发展会议(环发会议)有关制定《21 世纪议程》 第 19 章方案领域 B 第 26 和 27 段所述制度的授权,现转载如下:

"26. 全球统一的危险分类和标签制度尚未制定,以促进化学品特别是在工作场所或家中的安全使用。化学品分类可为不同的目的进行,是制定标签制度的一种特别重要的工具。制定统一的危害分类和标签制度应以进行之中的工作为基础;

- 27. 可行的话,应于 2000 年之前建立全球统一和配套的危害分类和标签制度,包括物质的安全数据单和易懂的符号在内。"
- 1.1.2.4 对这项授权后来在统一过程中作了分析和完善,以确定全球统一制度的参数。因此,组织间健全管理化学品方案(化学品方案)协调小组通过了下列澄清以确保参与者了解该项工作的范围:

"统一危险分类和标签的工作重点是制定所有化学品和化学品混合物的统一制度。制度各组成部分的适用因产品类型或生命周期的阶段而可能不同。一旦对某种化学品作了分类,在就给定产品或使用背景决定应采取何种信息步骤或其他步骤时可考虑不利影响的可能性。就有意摄入时的标签而言,药品、食品添加剂、化妆品和食品中杀虫剂残留物等将不在全球统一制度的覆盖范围。不过,在工人可能接触它们的场合,以及在运输过程中如果潜在的接触有此需要,则这些类型的化学品将在全球统一制度的覆盖范围内。统一化学分类制度协调小组认识到,将需作进一步的讨论以解决可能要求使用专门知识的部分产品使用类别的具体的适用问题。"3

- 1.1.2.5 在编写这一澄清时,统一化学分类制度协调小组仔细审议了有关全球统一制度可能适用的许多不同问题。例如,有人表示关切地说,某些部门或产品是否应当免除在外,以及这一制度是否适用于某种化学品生命周期的所有阶段。在这一讨论中商定了三个参数,它们对这一制度在一个国家或区域的适用至关紧要。以下对它们和一一说明:
  - (a) 参数 1: 全球统一制度涵盖所有危险化学品。全球统一制度危险公示各部分的适用方式(例如,标签、安全数据单)可能因产品类别或生命周期的阶段而互不相同。全球统一制度的目标对象包括消费者、工人、运输工人和应急反应人员。
    - (一) 现行的危险分类和标签制度处理所有类型的使用情况下对所有潜在危险化学品的潜在接触问题,包括生产、存储、运输、工作场所使用、消费使用和环境中的存在等。它们意在保护人员、设施和环境。就所涵盖的化学品而言,最广泛应用的要求一般可见于现有

<sup>3 《</sup>化学品方案关于全球统一制度预计适用的说明和进一步澄清》,IFCS/ISG3/98. 32B。

制度中适用于工作场所或运输的各个部分中。应当指出,"化学"一词广泛用于环发会议的各项协定和随后的文件中,它包括物质、产品、混合物、制剂或现行制度中可能用来表示涵盖范围的任何其他用语。

- (二)由于所有的化学品和商业化学产品都是在工作场所制造的(包括消费产品),装货和运输期间都由工人来搬运,而且经常由工人使用,因此任何特定类型的化学品或产品都不完全排除在全球统一制度之外。例如,目前在有些国家,药品生命周期的制造、存储和运输阶段由工作场所和运输要求所覆盖。工作场所的要求也可适用于从事某些药物的服用、溢出物的清除和保健背景下可能发生其他类型的接触的雇员。有些制度要求必须向这类雇员提供安全数据单及为他们开展培训。预计全球统一制度将以类似的方式适用于药品。
- (三) 在这类产品的生命周期的其他阶段,全球统一制度可能根本不适用。例如,就人类有意摄入或咽下而言,或在有意用于动物时,诸如医治人类或牲畜的药品等产品,根据现行制度的规定,一般不需要贴危险标签。此类要求一般并不会由于全球统一制度而适用于这些产品。(应当指出,与人类药品或牲畜药品的医用联系在一起的对服用者造成的危险一般在包装附加页中说明,不是本统一过程的组成部分。)同样,有些产品(如内含微量食品添加剂或农药的食品等)目前也不用标签标明这些物质的存在或危险。预计全球统一制度的适用也将不要求给它们贴这样的标签。
- (b) 参数 2: 制定全球统一制度的任务不包括确定统一的试验方法或提倡进一步的试验以处理不利的健康后果。
  - (一) 按照国际公认的科学原则进行的确定危险特性的试验,可用于确定对健康和环境的危险之目的。全球统一制度确定健康和环境危险的标准对试验方法没有特殊要求,允许使用不同的方法,只要它们在科学上是可靠的,并按照现行制度中提到的关于有关危险种类的程序进行验证并产生相互可以接受的数据。经合发组织是制定统一健康危险标准的牵头组织,但全球统一制度并不与经合发组织的试验准则方案捆绑在一起。例如,药物的试验按照在世界卫生组织(卫生组织)主持下制定的议定标准进行。按照这些试验产生的数据,在全球统一制度中将是可以接受的。危险货物运输专家小组委规定的物理危险标准则与诸如易燃性和爆炸性等危险种类的具体试验方法相挂钩。
  - (二) 全球统一制度依据的是目前可获得的数据。由于统一分类标准是根据现有的数据制定的, 因此,如果符合这些标准,将不要求重新试验已有公认试验数据的化学品。
- (c) 参数 3: 除了动物数据和有效的体内试验外,人类经验、流行病学数据和临床试验等也提供在适用全球统一制度时应加以考虑的重要信息。
  - (一) 现有制度大多都承认并使用临床取得的人类数据或现有的人类经验。全球统一制度的适

用不应当阻止此类数据的使用,而且全球统一制度明确承认有关危险或有害效应可能性 (即风险)的所有适当和相关信息的存在和使用。

#### 1.1.2.6 其他的范围限制

1.1.2.6.1 全球统一制度不打算统一风险评估程序或风险管理决策(如为雇员的接触制定一个可允许的接触极限),它们除了危险分类外一般还要求进行某种风险评估。此外,各国的化学品目录要求也与全球统一制度没有联系。<sup>4</sup>

# 1.1.2.6.2 危险与风险

1.1.2.6.2.1 每种危险分类和公示制度(工作场所、消费者、运输)一开始都是先评估所涉化学品或化学产品造成的危险。它的伤害力程度取决于它内在的特性,即它干扰正常的生物过程的能力和它的燃烧、爆炸、腐蚀等能力。这种制度依据的主要是对现有科学研究的审查。在将接触与有关潜在危险的数据结合起来一并考虑时,使用伤害发生的风险或可能性及随后公示此种信息的概念。风险评估的基本方法以简单的公式描述为:

# 危险×接触=风险

1.1.2.6.2.2 这样,如果能将危险或接触最大限度地减少,伤害的风险或可能性也就随之最大限度地减少。 成功的危险公示提醒用户注意危险的存在和最大限度地减少接触和随之而来的风险的必要性。

1.1.2.6.2.3 传达信息的所有制度(工作场所、消费者、运输)都包括某种形式的危险和风险。它们的不同在于何地和如何提供信息和它们关于潜在接触的详尽程度。例如,消费者与药品的接触包括医生为处理某种特定病症所规定的具体剂量。接触是有意的。因此,药物管理机构已经断定,对于消费者而言,提供的特定剂量伴有某种可接受程度的风险。向用药人提供的信息传达药物管理机构评估的风险而不是说明药品或其成分的内在危险。

#### 1.1.3 全球统一制度的适用

#### 1.1.3.1 全球统一制度适用的统一

1.1.3.1.1 全球统一制度的目的是确定在化学物质和混合物中发现的内在危险并传达关于这些危险的危险信息。危险分类的标准已经统一。危险说明、符号和信号词也已标准化和统一,形成综合危险公示制度。全球统一制度将允许将现行制度的危险公示要素融合起来。主管当局将根据主管当局和目标对象的需要决定如何适用全球统一制度的各种要素。(另见《危险公示:标签》(第1.4章第1.4.10.5.4.2段)和《基于伤害可能性的消费产品标签》,附件4。)

1.1.3.1.2 就运输而言,全球统一制度的适用预计将类似于当前运输要求的适用。将在危险货物的容器上标上表示急性毒性、物理危险和环境危险的象形图。就像其他部门的工人一样,运输部门的工人也受受到

<sup>4 《</sup>化学品方案关于全球统一制度预计适用的说明和进一步澄清》,IFCS/ISC3/98.32B。

培训。预计运输部门将不会采用全球统一制度中关于信号词和危险说明等情况的要素。

- 1.1.3.1.3 在工作场所,预计将采用全球统一制度所有的要素,包括具有全球统一制度规定的统一核心信息的标签和安全数据单。预计还将在此之外开展雇员培训,以帮助确保有效的公示。
- 1.1.3.1.4 对于消费部门而言,预计标签将是全球统一制度适用的主要重点。这些标签将包括全球统一制度的核心要素,但它们必须服从某些制度中特定部门的某些考虑因素。(另见《危险公示:标签》(第 1.4 章,第 1.4.10.5.4.2 段)和《基于伤害可能性的消费产品标签》,附件 4。)

#### 1.1.3.1.5 积木式做法

- 1.1.3.1.5.1 依照积木式做法,各国可自行确定哪些积木适用于其制度的各个部分。不过,如果一个制度所覆盖的一些内容属于全球统一制度的范围并且执行全球统一制度,那这种覆盖应当一致。例如,如果某种制度覆盖某一化学品的致癌性,它应当遵循统一的分类计划和统一的标签要素。
- 1.1.3.1.5.2 在审查现行制度的要求时注意到,危险的覆盖范围可能因目标对象对信息的可见需要不同而有所不同。特别是,运输部门重视的是急性健康效应和物理危险,但是迄今为止尚未覆盖在该种背景下可能遇到的各种接触所引起的慢性效应。但也可能存在其他的差别,有些国家决意不覆盖在每种使用背景下全球统一制度所涉及的全部效应。
- 1.1.3.1.5.3 因此,可将全球统一制度的各种统一要素视为一堆积木,可用它们搭建某种管理做法。人人都可利用全套积木,而且如果一个国家或组织在采用全球统一制度时选择覆盖某种效应就应当利用它们,但并不非得采用全套积木。物理危险在工作场所和运输部门是重要的因素,但消费者在使用某种产品时可能不一定需要了解某些具体的物理危险。只要某个部门或系统所覆盖的危险以符合全球统一制度的标准和要求覆盖,就将被认为适当执行了全球统一制度。尽管出口商需要遵守进口国对于执行全球统一制度的要求,但希望全球统一制度在全球范围的适用将最终导致出现一种完全统一的局面。

### 1.1.3.2 全球统一制度的执行和坚持

- 1.1.3.2.1 为了执行全球统一制度的目的,联合国经济及社会理事会(经社理事会)按照 1999年 10月 26日第 1999/65号决议重组了联合国危险货物运输问题专家委员会。新的危险货物运输问题和全球化学品统一分类和标签制度专家委员会保留了它的危险货物运输问题专家小组委员会(危险货物运输专家小组委)并设立了一个新的附属机构——全球化学品统一分类和标签制度专家小组委员会(全球统一制度专家小组委)。全球统一制度专家小组委具有下列职能:
  - (a) 充当全球统一制度的监管机构,管理统一过程和提供指导;
  - (b) 使全球统一制度随时跟上需要,并考虑到作出变动的必要性;确保它的持续相关性和实际有用性;并酌情与现有机构合作,确定更新技术标准的必要性和时机;
  - (c) 促进人们对全球统一制度的了解和全球统一制度的使用并鼓励人们提供反馈信息;

- (d) 将全球统一制度提供给全球范围使用和适用;
- (e) 就如何适用全球统一制度和如何解释及使用技术标准以支持适用的统一提供指导;和
- (f) 制定工作方案和向委员会提出建议。
- 1.1.3.2.2 危险货物运输专家小组委和全球统一制度专家小组委都在上级委员会的领导下开展工作,负责这两个领域。委员会负责战略问题而不是技术问题。根据设想,它将不审查、变更或修订小组委员会的技术建议。因此,它的主要职能是:
  - (a) 根据现有的资源核准小组委员会的工作方案;
  - (b) 在共同关心和重叠的领域协调战略和政策方向;
  - (c) 正式核可小组委员会的建议并提供将这些建议送交经社理事会的机制; 和
  - (d) 为小组委员会顺利开展工作提供便利和进行协调。

# 1.1.4 全球统一制度的文件

- 1.1.4.1 本文件对全球统一制度作了介绍。它包括统一的分类标准和危险公示要素。此外,文件中还载有指导意见以协助各国和各个组织开发执行全球统一制度的工具。全球统一制度旨在允许自我分类。关于执行全球统一制度的规定允许统一制定国家政策,同时又保持足够的灵活性,以照顾可能必须满足的任何特殊要求。此外,全球统一制度还旨在创造方便用户的做法,以促进执行机构的工作和减轻行政负担。
- 1.1.4.2 本文件是介绍全球统一制度的主要文件,但预计还将提供技术援助工具以协助和促进执行工作。

# 第1.2章

# 定义和缩略语

在全球统一制度中:

《路运危险货物协定》指经修正的《欧洲国际公路运输危险货物协定》:

**气溶胶**指任何不可再充填的容器,它由金属、玻璃或塑料制成并含有压力下压缩、液化或溶解的气体,带或不带液体、糊状物或粉末,并配有一个释放装置可让装填物作为固态或液态颗粒弹出悬浮在一种气体中,成为一种泡沫、糊状物或粉末,或处于液体或气体状态。气溶胶包括气溶胶喷罐;

**合金**指一种金属材料,宏观上同质,由两种或多种元素组合而成,但机械手段不能将它们轻易分开。为了全球统一制度下的分类目的,合金被认为是混合物;

BCF 指"生物浓度系数";

BOD/COD 指"生化需氧量/化学需氧量":

致癌物指诱发癌症或提高其发生率的一种化学物质或多种化学物质的混合物;

**化学名称**指唯一标识一种化学品的名称。这一名称可以是符合国际纯粹与应用化学联合会(国际化联)或 化学文摘社的命名制度的名称,也可以是一种技术名称;

**主管当局**指被指定或被公认负责《全球化学品统一分类和标签制度》(全球统一制度)的任何国家机构或 当局:

压缩气体指加压包装时在-50℃时完全是气态的一种气体;包括临界温度为<-50℃的所有气体;

接触敏化剂指在皮肤接触后将诱发过敏反应的物质。"接触敏化剂"的定义等同于"皮肤敏化剂";

金属腐蚀剂指一种物质或混合物,它通过化学反应严重损害或甚至毁坏金属;

**临界温度**指高于它时一种纯净气体便不能液化的温度,而不管压缩程度如何;

真皮腐蚀: 见皮肤腐蚀;

真皮刺激: 见皮肤刺激:

溶解气体指加压包装时以液相溶剂溶解的气体;

EC50 指引起 50%最大反应的物质的有效浓度;

EC 号或 (ECN°) 是欧洲共同体用来确定危险物质的基准号,特别是在《欧洲现存商业化学物质清单》

下登记的那些基准号;

经社理事会指联合国经济及社会理事会:

ErC50 指生长速率下降方面的 EC50;

欧盟指"欧洲联盟";

爆炸性物品指含有一种或多种爆炸性物质的物品:

**爆炸性物质**指这样一种固态或液态物质(或物质的混合物),其本身能够通过化学反应产生气体,而产生气体的温度、压力和速度能对周围环境造成破坏。其中也包括发火物质,即使它们不放出气体;

眼刺激指在眼睛前表面施用试验物质后眼睛发生变化,这些变化在施用21天以内具有完全可逆性:

易燃气体指在 20℃和一个标准压力 101.3kPa 时依靠空气易燃的气体;

易燃液体指闪点不超过93℃的液体;

**易燃固体**指易于燃烧或通过磨擦可以起火或有助于起火的固体;

闪点指在规定试验条件下施用某种点火源造成液体汽化而着火的最低温度(经更正为标准压力 101.3kPa);

粮农组织指联合国粮食及农业组织;

**气体**指一种物质,它(1)在50℃时蒸气压力大于300kPa;或(2)在20℃和标准压力101.3kPa时完全是气态;

全球统一制度指"全球化学品统一分类和标签制度";

**危险类别**指每个危险种类中的标准划分,如口服急性毒性包括五种危险类别而易燃液体包括四种危险类别。这些危险类别在一个危险种类内比较危险的严重程度,不可将它们视为较为一般的危险类别比较;

**危险种类**指物理、健康或环境危险的性质,例如易燃固体、致癌性、口服急性毒性;

**危险说明**指对某个危险种类或类别的说明,它们说明一种危险产品的危险性质,在情况适合时还说明其危险程度;

原子能机构指"国际原子能机构";

癌症机构指"国际癌症研究机构";

劳工组织指"国际劳工组织";

海事组织指"国际海事组织";

初始沸点指一种液体的蒸气压力等于标准压力(101.3kPa),即第一个气泡出现时的温度;

化学品方案指"组织间健全管理化学品方案";

标准化组织指"国际标准化组织";

国际化联指"国际纯粹与应用化学联合会"

**标签**指关于一种危险产品的一组适当的书面、印刷或图形信息要素,因为与目标部门相关而被选定,它们 附于或印刷在一种危险产品的直接容器上或它的外部包装上;

标签要素指统一用于标签上的一类信息,例如象形图、信号词;

LC50(50%致死浓度)指空气中或水中一种化学品造成一组试验动物 50%(一半)死亡的浓度;

 $LD_{50}$ 指如果一次给予,一种化学品造成一组试验动物 50%(一半)死亡的数量;

*L(E)C<sub>50</sub>* 指 LC<sub>50</sub> 或 EC<sub>50</sub>;

液化气体指加压包装时在-50℃以上温度时是部分液态的气体。分为以下两种情况:

- (一) 高压液化气体: 临界温度在-50℃至+65℃之间的气体; 和
- (二) 低压液化气体: 临界温度在+65℃以上的气体;

液体指这样一种物质或混合物,它在50℃时蒸气压力不超过300kPa(3 巴),在20℃和一个标准压力101.3kPa时完全汽化,而且在一个或低于一个标准压力101.3kPa 时熔点或初始熔点为20℃。对于不能确定具体熔点的黏性物质或混合物,应进行ASTM D4359-90试验;或进行《欧洲国际公路运输危险货物协定》(《陆运危险货物协定》))附件A第2.3.4节规定的确定流度的试验(透度计试验);

混合物指两种或更多种物质组成但不起反应的混合物或溶液;

诱变剂指引起细胞和(或)有机体群体突变或提高其发生率的一种剂;

突变指细胞中遗传物质数量或结构的永久变化;

NOEC指"未见效应浓度";

经合发组织指"经济合作与发展组织";

**有机过氧化物**指这样一种液态或固态有机物质,它含有二阶-O-O 结构并可能被视为过氧化氢的衍生物,其中一个或两个氢原子已被有机基取代。这一用语也包括有机过氧化物组成物(混合物);

氧化气体指一般通过提供氧气比空气更能造成或有助于造成其他物质燃烧的任何气体:

氧化性液体指本身未必易燃但一般通过产生氧气可造成或有助于造成其他物质燃烧的液体;

**氧化性固体**指本身未必易燃但一般通过产生氧气可造成或有助于造成其他物质燃烧的固体;

QSAR 指"定量结构活性关系";

**象形图**指一种图形结构,它可能包括一个符号加上其他图形要素,例如边界、背景图案或颜色,意在传传 达具体的信息;

**防范说明**指一个短语(和(或)象形图),说明建议采取的措施,以最大限度地减少或防止因接触某种危险物质或因对它存储或搬运不当而产生的不利效应;

**产品标识符**指标签或安全数据单上用于危险产品的名称或编号。它提供一种唯一的手段使产品使用者能够在特定的使用背景下识别该物质或混合物,例如在运输、消费时或在工作场所:

发火液体指即使数量小也能在与空气接触后五分钟之内引燃的液体;

发火固体指即使数量小也能在与空气接触后五分钟之内引燃的固体;

发火物品指含有一种或多种发火物质的物品;

**发火物质**指这样一种物质或物质的混合物,它旨在通过非爆炸自持放热化学反应产生的热、光、声、气体、烟或所有这些的组合来产生效应;

**易燃固体**指如果通过与点火源(如火柴)的短暂接触就能轻易引燃和如果火焰迅速蔓延,它们就具有危险性的粉末、颗粒或糊状物质或混合物;

**《关于危险货物运输的建议书:试验和标准手册》**指印有这一名称的联合国出版物的最新修订本及其任何已出版的修正案;

**《关于危险货物运输的建议书:规章范本》**指印有这一名称的联合国出版物的最新修订本及其任何已出版的修正案:

冷冻液化气体指包装时由于温度低而呈部分液态的气体:

呼吸道敏化剂指吸入它后诱使气道过敏的物质;

《国际铁路运输危险货物条例》指经修正的《国际铁路运输危险货物条例》[《国际铁路运输公约附录 B (《关于国际铁路货物运输合同的统一规则》附件 1);

**自加速分解温度**指包装物质可能发生自加速分解的最低温度;

**自加热物质**指发火物质外的这样一种固态或液态物质,它能通过与空气反应和在不提供能量的情况下自加热;这种物质不同于发火物质,因为它只有在数量大(以千克论)时和经过长时间后(数小时或数天)后

才会引燃;

**自反应物质**指甚至在无氧气(空气)参与下也能进行强烈放热分解的热不稳定的液态或固态物质。这一定 义不包括根据全球统一制度被分类为爆炸物、有机过氧化物或氧化物的物质或混合物;

**严重眼损伤**指在对眼睛前表面施用试验物质后产生眼睛组织损伤或严重的实际视力衰退,这种损伤在施用 21 天之内不能完全挽回;

**信号词**指标签上用来表明危险的相对严重程度和提醒读者注意潜在危险的单词。全球统一制度使用"危险"和"警告"作为信号词;

皮肤腐蚀指在施用试验物质达 4 小时后对皮肤造成不可逆损伤;

皮肤刺激指在施用试验物质达4小时后对皮肤造成可逆损伤;

皮肤敏化剂指在皮肤接触后将诱发过敏反应的物质。"皮肤敏化剂"等同于"接触敏化剂";

固体指不符合液体或气体定义的物质或混合物:

**物质**指自然状态或通过生产过程得到的化学元素及其化合物,包括维持产品稳定所需的任何添加剂和派生于所用过程的杂质,但不包括可以分离而不影响物质稳定性或改变其组成结构的任何溶剂;

**与水接触后释放易燃气体的物质**指与水相互作用后可能产生自发易燃性或释放危险数量的易燃气体的固态或液态物质或混合物;

**补充标签要素**指在危险产品容器上提供但全球统一制度不作要求或规定的任何补充性非统一类信息。在有些情况下,这种信息可能是其他主管当局要求提供的,也可能是制造商/经销商自行决定提供的补充信息:

符号指旨在简明地传达信息的图形要素;

**技术名称**指一般用于商业、条例和法规中标识一种物质或混合物的名称而非国际化联或化学文摘社的名称,而且为科学界所承认。用于复杂混合物(例如石油馏分或天产品)、农药(例如标准化组织或美国国家标准学会系统)、染料(彩色指数系统)和矿物的名称都是技术名称;

环发会议指"联合国环境与发展会议";

**危险货物运输/全球化学品统一分类和标签制度专委会**指"联合国危险货物运输问题和全球化学品统一分类和标签制度专家委员会";

环境规划署指"联合国环境规划署";

教科文组织指"联合国教育、科学及文化组织":

训研所指"联合国训练和研究所";

全球统一制度专家小组委指"联合国全球化学品统一分类和标签制度专家小组委员会";

**危险货物运输专家小组委**指"联合国危险货物运输问题专家小组委员会";

卫生组织指"世界卫生组织";

气象组织指"世界气象组织"。

# 第1.3章

# 危险物质和混合物分类

#### 1.3.1 导言

制定全球统一制度的着手点是由经合发组织统一健康和环境危险分类和标签工作队和危险货物运输专委会/劳工组织物理危险工作组制定分类标准。

# 1.3.1.1 健康和环境危险种类:经合发组织统一分类和标签工作队

- 1.3.1.1.1 经合发组织统一分类和标签工作队的工作一般为三个相关类型:
  - (a) 比较各主要的分类制度,确定类似或相同的要素,对于不相似的要素,则就妥协方案建立 共识:
  - (b) 审查用以界定关注危险种类(例如急性毒性、致癌性)的标准的科学依据,就试验方法、 数据解释和关注程度取得专家共识,然后寻求就标准取得共识。对于某些危险种类,现行 办法没有标准,工作队则制定了有关标准;
  - (c) 如果实行的是决策树办法(例如刺激)或分类办法中有附属标准(急性水生毒性),则就使用标准的过程或办法建立共识。
- 1.3.1.1.2 接着,经合发组织统一分类和标签工作队继续逐步制定统一分类标准。对每个危险种类都采取了下列步骤:
  - (a) 第1步:透彻分析现行分类制度,包括制度及其标准的科学依据、理由及其使用说明。经合发组织统一分类和标签工作队就下列危险种类编写了第1步文件并在讨论后按要求对其作了修正:眼刺激/严重眼损伤、皮肤刺激/腐蚀、敏化物质、生殖细胞诱变剂、生殖毒性、特定目标器官/系统毒性和化学混合物;
  - (b) <u>第2步</u>: 就统一分类制度和每个危险种类和类别的标准提出建议。经合发组织统一分类和标签工作队编写了一份第2步文件并在讨论后按要求对其作了修正:

# (c) <u>第3步</u>:

- (1) 经合发组织统一分类和标签工作队就修订的第2步建议达成共识:或
- (2) 如果未能达成共识,经合发组织统一分类和标签工作队则将"非共识"项目确定为修订的第2步文件中的备选方案,以便进一步讨论和解决;
- (d) 第 4 步: 将最后建议提交给经合发组织化学品委员会和化学品、农药和生物技术工作队联

席会议核准,随后再提交给化学品方案统一化学分类制度协调小组,以便将它纳入全球统一制度。

# 1.3.1.2 危险货物运输专委会/劳工组织物理危险工作组

危险货物运输专委会/劳工组织物理危险工作组使用的过程与经合发组织统一分类和标签工作队的过程相类似。其工作包括:比较主要的分类制度,确定类似或相同的要素,对于不相似的要素,则就妥协方案达成共识。但对于物理危险,工作组将运输定义、试验方法和分类标准作为了其工作的基础,因为它们在实质上已经统一。工作进而审查了标准的科学依据,就试验方法、数据解释和标准取得了一致意见。对于多数危险种类而言,现行办法已经到位而且正为运输部门所使用。因此,部分工作的重点是确保适当工作场所、环境和消费者安全问题得到适当处理。

#### 1.3.2 关于全球统一制度的一般性考虑

#### 1.3.2.1 制度的范围

- 1.3.2.1.1 全球统一制度适用于纯化学物质、它们的稀释溶液和化学物质的混合物。美国职业安全和健康署《危险公示标准》(29 CFR 1910.1200)或类似定义界定的"物品"不属于这一制度的范围。
- 1.3.2.1.2 全球统一制度的一个目标是简单透明,对种类和类别作出明确区分,以便尽量做到"自我分类"。对于许多危险种类来说,标准是半定量或半定性的,为了分类的目的,需要专家判断来解释数据。此外,对于某些危险种类(如眼刺激、爆炸物或自反应物质),提供了决策树方法,以提高使用的方便程度。

# 1.3.2.2 "分类"的概念

- 1.3.2.2.1 全球统一制度使用"危险分类"这一术语来表明,它只考虑物质或混合物的内在危险特性。
- 1.3.2.2.2 危险分类只有三步,即:
  - (a) 确定与某种物质或混合物的危险有关的数据;
  - (b) 然后审查这些数据以弄清与该物质或混合物有关的危险; 和
  - (c) 将数据与商定的危险分类标准进行比较,从而决定是否将该物质或混合物分类为危险物质或混合物并视情况决定危险的程度。
- 1.3.2.2.3 正如《化学品方案关于全球统一制度预计适用的说明和进一步澄清》文本中"目的、范围和适用"(第1.1章第1.1.2.4)部分所指出的那样,人所公认,一旦对一种化学品作了分类,在决定就给定的产品或使用背景应当采取何种信息步骤或其他步骤时可考虑不利效应的可能性。

#### 1.3.2.3 分类标准

物质和混合物的分类标准在本文件第2和第3部分介绍,其中每个标准针对一个特定的危险种

类或一组密切相关的危险种类。建议的混合物分类过程基于下列顺序:

- (a) 如果整个混合物有试验数据,混合物的分类将始终依据该数据进行;
- (b) 如果混合物本身没有试验数据,那么就应考虑每个具体章节中载有和解释的连接原则以弄清它们是否允许对混合物分类:

此外,对于健康和环境种类而言,

(c) 如果(1)混合物本身没有试验数据,和(2)现有信息不足以适用上述连接原则,那么就用每章所述关于根据已知信息估计危险的议定方法来对混合物分类。

#### 1.3.2.4 现有数据、测度方法和试验数据的质量

- 1.3.2.4.1 全球统一制度本身并未提出物质或混合物试验要求。因此,全球统一制度不要求为任何危险种类产生试验数据。该制度承认,管理制度的某些部分确实要求产生数据(例如农药),但是这些要求与全球统一制度没有具体联系。为对混合物进行分类而制定的标准将允许使用有关混合物本身和(或)类似混合物的现有数据和(或)有关混合物成分的数据。
- 1.3.2.4.2 化学物质或混合物的分类既依赖于标准又依赖于作为标准基础的试验方法的可靠性。在有些情况下,分类以特定试验(例如物质或混合物组分的迅速生物降解试验)通过与否来决定,而在另一些情况下,则根据试验期间的剂量反应曲线和观察结果作出解释。在所有情况下,必须使试验条件标准化,以便试验结果能再现于给定的化学物质,而且标准化的试验能为界定关注的危险种类产生"有效"数据。在这种情况下,验证是为了某个特定目的证实一个程序的可靠性和相关性的过程。
- 1.3.2.4.3 按照国际公认的科学原则进行的确定危险特性的试验,可用于健康和环境危险的危险确定。全球统一制度确定健康和环境危险的标准对试验方法没有特殊要求,允许使用不同的方法,只要它们在科学上是可靠的,并按照现行制度中提到的关于有关危险种类的程序进行验证并产生相互可以接受的数据。确定物理危险的试验方法一般较为明确而且在全球统一制度中作了规定。

#### 1.3.2.4.4 先前分类的化学品

化学品方案统一化学分类制度协调小组确立的一般原则之一规定,对于现行制度下已为化学品分类产生的数据,在根据统一制度对这些化学品进行分类时应予以接受,以避免重复试验和试验动物的不必要使用。在全球统一制度的标准不同于现行制度的标准的情况下,这项政策具有重大影响。在有些情况下,可能难以确定来自较早研究的现有数据的质量。在这种情况下,将需要的专家的判断。

#### 1.3.2.4.5 造成特殊问题的物质/混合物

一种物质或混合物对生物或环境系统的效应,除了其他因素,还受物质或混合物和(或)混合物成分分的物理化学特性影响和受构成物质在生物学上可获的方式影响。在这方面,有些组群的物质可能造成特殊的问题,例如某些聚合物和金属。如果来自国际上可接受的试验方法的结论性实验数据能能够证

明某种物质或混合物在生物学上无法获得,就不必对它进行分类。同样,在对混合物进行分类时,应视情况将关于混合物成分的生物药效率数据与统一分类标准结合起来使用。

### 1.3.2.4.6 动物福利

实验动物的福利是一个令人关注的问题。这种伦理关切不仅包括减轻试验动物的紧张和痛苦,而且在某些国家也包括这类动物的使用和消费。在可能和合适的情况下,不要求使用活动物的试验和实验,优先于使用有感觉力的活实验动物的试验和实验。为此,对于某些危险(皮肤刺激/腐蚀和眼刺激/严重眼损伤),以非动物观察/测量为开头的试验办法被列为分类制度的组成部分。对于其他的危险,例如急性毒性,使用动物较少或造成痛苦较轻的替代动物试验已得到国际承认,应优先于常规 LD50 试验。

### 1.3.2.4.7 来自人类的证据

为了分类,在评价一种化学品对人的健康和危险时,应考虑与化学品对人的影响有关的可靠的流行病学数据和经验(如职业数据、来自事故数据库的数据)。仅仅为了确定危险而对人进行试验一般是不能接受的。

#### 1.3.2.4.8 专家判断

混合物分类方法也包括在若干领域适用专家判断,以便确保现有信息能够被用于尽量多的混合物,从而保护人类健康的环境。在为进行物质危险分类而解释数据时也可能需要专家判断,特别是在需要确定证据权重的情况下。

# 1.3.2.4.9 证据权重

- 1.3.2.4.9.1 对于某些危险种类,当数据符合标准时,分类直接产生。对于其他种类,一种物质或混合物的分类是依据证据的总权重来作出的。这就是说,综合考虑影响毒性确定的所有可用信息,包括有效的体内试验结果、有关的动物数据和人类经验,如流行病学及临床研究和有可靠文件记载的案例报告及观察结果。
- 1.3.2.4.9.2 数据的质量和一致性很重要。其中应包括与被分类的材料有关的物质或混合物的评价,也包括作用部位和作用机制或方式研究的成果。在每一个证据权重确定过程中,都应将正负两方面的结果结合起来。
- 1.3.2.4.9.3 与每章中的分类标准相一致的正数应,不论是见于人类还是动物,通常都可证明分类的合理性。在证据既来自人类也来自动物但研究结果却存在矛盾时,就必须评估来自这两个来源的证据的质量和可靠性,以解决分类问题。一般来说,质量和可靠性高的人体数据应优先于其他的数据。不过,即使精心设计和精心进行的流行病学研究也可能缺乏足够数量的试验对象来发现较为罕见但仍很重要的效应或评估潜在的混淆因素。精心进行的动物研究获得的正结果不一定因为缺乏正的人类经验而予以否定,而是还应比照预期的效应发生频率和潜在混淆因素的影响,评估人类和动物这两方面数据的可靠性和质量。
- 1.3.2.4.9.4 接触途径、机械信息和新陈代谢研究都与确定某种效应与人的相关性具有关系。在此类信息对与人的相关性提出疑问时,可能需要降低类别。在作用的机理或方式显然与人不相关时,就不应对物质或

混合物进行分类。

1.3.2.4.9.5 在确定证据权重的过程中,应将正负两种结果结合起来。不过,按照可靠的科学原则进行并取得在统计学和生物学上有效的正结果的单次正研究也可能证明分类的合理性。

#### 1.3.3 混合物分类的具体考虑

# 1.3.3.1 定义

- 1.3.3.1.1 为了确保充分了解对混合物分类的规定,需要对某些用语进行定义。这些定义是为了评价或确定一种产品的危险以便进行分类和标签,而不是为了适用于其他情况,如存货报告。进行定义的意图在于确保(a)评价全球统一制度范围内的所有产品以确定它们的危险,然后视情况按照全球统一制度的标准进行分类;和(b)评价基于所涉的实际产品,即一种稳定的产品。如果在制造期间发生反应并产生一种新产品,就必须进行新的评价和分类以将全球统一制度适用于新产品。
- 1.3.3.1.2 现已接受下列用语的工作定义:物质、混合物、合金(关于全球统一制度的其他定义和缩略语,见第1.2 章)。

物质:自然状态或通过任何生产过程得到的化学元素及其化合物,包括维持产品稳定所需的任何添加剂和派生于所用过程的任何杂质,但不包括可以分离而不影响物质稳定性或改变其组成结构的任何溶剂;

混合物:由两种或更多种物质组成但不起反应的混合物或溶液;

<u>合金</u>: 合金是一种金属材料,宏观上同质,由两种或多种元素组合而成,但机械手段不能将它们轻易分开。为了全球统一制度下的分类目的,合金被认为是混合物;

- 1.3.3.1.3 在对全球统一制度中的物质和混合物进行分类时,应当使用这些定义以保持一致。还请注意,如果一种物质或混合物的杂质、添加剂或个别成分已被确定而且其本身已被分类,则分类期间应把它们考虑在内,如果它们超过了特定危险种类的临界值/浓度极限值的话。
- 1.3.3.1.4 作为一个实际问题,人们认识到有些物质可能与大气气体如氧气、二氧化碳、水蒸气等缓慢反应而形成不同的物质;它们也可能与一种混合物的其他组成物质非常缓慢地发生反应而形成不同的物质;还可能自行聚合而形成低聚物或聚合物。不过,此类反应产生的不同物质一般被认为浓度很低,不足以影响混合物的危险分类。

# 1.3.3.2 临界值/浓度极限值的使用

1.3.3.2.1 对于未经试验的混合物,在根据其成分的危险对它进行分类时,全球统一制度中的一些危险种类使用该混合物已分类成分的一般临界值/浓度极限值。采用的临界值/浓度极限值足以确定多数混合物的危险,但有些混合物也可能含有浓度低于统一临界值/浓度极限值的危险成分,而这些成分仍会造成某种可识别的危险。也可能存在这样的情况:统一临界值/浓度极限值大大低于根据某个成分既定的非危险水平预期

的程度。

- 1.3.3.2.2 通常,全球统一制度中采用的普通临界值/浓度极限值应统一适用于所有管辖范围和所有部门。 不过,如果分类者掌握的信息表明,一种成分的危险在低于一般临界值/浓度极限值时将表现明显,那就应 对含有此种成分的混合物进行相应分类。
- 1.3.3.2.3 有的时候,结论性的数据可能显示,当以高于全球统一制度的一般临界值/浓度极限值水平存在时,某种成分的危险将不明显。在这种情况下,混合物可按这些数据分类。数据应当排除这样的可能性,即成分在混合物中作用方式将使危险程度高于纯物质的危险程度。此外,混合物不应含有将会影响这种分类决定的成分。
- 1.3.3.2.4 应保留支持使用一般临界值/浓度极限值以外的任何值的适当文件,以备索要审查。

# 1.3.3.3 增效效应或抵消效应

在按照全球统一制度的要求进行评估时,评估员必须考虑到关于混合物成分中可能发生增效效 应的所有可用信息。只有在分类决定得到足够数据支持时,才能根据抵消效应将混合物的分类降低到较低 一级的危险类别。

# 第1.4章

# 危险公示:标签

#### 1.4.1 目标、范围和适用

- 1.4.1.1 制定全球统一制度工作的目标之一是根据为全球统一制度制定的分类标准,制定统一的危险公示制度,其中包括标签、安全数据单和易懂符号。这项工作是在劳工组织的主持下,由劳工组织危险公示工作组进行的,工作组使用了《危险物质和混合物分类》(第1.3章,第1.3.1.1.2段)中为统一分类提出的3步程序。
- 1.4.1.2 统一的危险公示制度包括适当的标签工具,以便传达有关全球统一制度每个危险种类和类别的信息。如果使用已分配给全球统一制度中每个危险种类和类别以外的符号、信号词或危险说明,将是违反统一的做法。
- 1.4.1.3 劳工组织工作组审议了《化学品方案统一化学分类制度协调小组职权范围》<sup>1</sup> 所述一般原则适用于危险公示的情况,它确认,在有些情况下,对于某些目标对象,在决定是否列入某些危险种类和类别时,各制度的要求和理论依据可能需要具有一定的灵活性。
- 1.4.1.4 例如,《联合国关于危险货物运输的建议书:规章范本》的范围只包括急性毒性危险种类中最严重的危险类别。这项制度将不标明属于较轻危险类别范围的物质或混合物(例如,属于>300mg/kg 口服范围的那些物质或混合物)。不过,如果对该项制度的范围进行修正,列入属于这些较轻危险类别的物质和混合物,那就应用适当的全球统一制度标签工具确定其标签。使用不同的临界值来决定对一个危险类别中哪些产品使用标签,是违背统一的做法。
- 1.4.1.5 人们承认,由于目标对象的需要,《联合国关于危险货物运输的建议书:规章范本》主要以图 形方式提供标签信息。因此,联合国危险货物运输问题专家小组委员会可选译不将信号词和危险说明列为 根据《规章范本》在标签上提供的信息的一部分。

#### 1.4.2 术语

1.4.2.1 有关危险公示的共同用语和定义的说明载于第 1.2 章中的"定义和缩略语"部分。

#### 1.4.3 目标对象

1.4.3.1 现已确定将作为统一危险公示办法的主要最终用户的目标对象的需要。关于目标对象将如何接收和使用所传达的有关危险化学品达的信息的讨论受到了特别关注。讨论的因素包括产品的潜在使用、标签以外信息的可获性和训练的可获性等。

<sup>1</sup> 化学品方案,统一化学品分类制度协调组,《修订的职权范围和工作方案》(LOMC/HCS/95-1996年1月4日)。

- 1.4.3.2 现已认识到,难以完全区分不同目标对象的需要。例如,工人和急救人员都在存储设施中使用标签,而且诸如油漆和溶剂等产品既为消费者所使用,也在工作场所使用。此外,农药既可用于消费者情景(例如草坪和园地产品),也可用于工作场所(例如,种子加工厂用农药加工种子)。尽管如此,某些特点仍是不同的目标对象所特有的。本节以下各段讨论了目标对象和他们所需的信息类型。
- 1.4.3.3 工作场所:雇主和工人需要了解在工作场所使用或搬运的化学品特有的危险,以及关于为了避免这些危险可能造成的不利效应所需的具体保护措施的信息。就化学品存储而言,化学品容器(包装)将潜在危险降低到最低限度,而在出现事故的情况下,工人和急救人员需要知道他们适合采取哪些减缓措施。在此情况下,他们需要的是可以在一定距离外看清的信息。不过,标签并不是这种信息的唯一来源,通过安全数据单和工作场所风险管理系统也能获得。后者还应规定进行危险识别和预防方面的训练。所开展的训练的性质和安全数据单提供的信息的准确性、全面性和完整性可能有所不同。不过,与消费者等等比较,工人可以更深层地了解符号和其他类型的信息。
- 1.4.3.4 消费者:多数情况下,标签可能是消费者当时可得的唯一信息源。因此,标签需要足够详尽并与产品的使用相关。在以什么样的办法向消费者提供信息的问题上,存在着相当大的哲学分歧。某些消费标签制度认为,基于伤害可能性的标签(即风险公示)是这方面一种有效的方法,而其他制度考虑的则是"知情权"原则,它们要求向消费者提供完全基于产品危险的信息。消费者教育与其他对象的教育相比,难度较大而效果较差。使用最简单和最易明了的术语向消费者提供充足的信息是一大挑战。全面性问题对于这一目标对象特别重要,因为消费者能够依靠的可能只有标签信息。
- 1.4.3.5 急救人员: 急救人员需要各种程度不等的信息。为便于立即作出反应,他们需要准确、详尽和足够明确的信息。这一点适用于运输过程中、存储设施或工作场所发生事故的情况。例如,消防人员和首先到达事故现场的人员需要能够在一定距离外分辨和解释的信息。此类人员在使用图形和编码信息方面受过高度训练。不过,急救人员也需要关于危险和反应技术的较为详尽的信息,这些他们可从一系列来源获得。负责治疗事故或紧急情况受害者的医务人员的信息需要,可能与消防人员不同。
- 1.4.3.6 运输:《联合国关于危险货物运输的建议书:规章范本》适合各种各样的目标对象,虽然它针对的主要是运输工人和急救人员。其他对象包括雇主,提供或接受供运输的危险货物的人员,或从运输车辆或散货箱上装卸危险货物的人员。他们全都需要适用于所有运输情况的一般安全做法方面的信息。例如,司机需要了解发生事故时应当怎么做,而不管运输的是什么物质(例如,向当局报告事故,将货运单据保存在特定的地点等)。对于特定危险,司机可能只需要有限的信息,除非他们也装卸货物或参加灌装等。与危险货物可能直接接触的工人,例如在货船上的工人,则需要更详尽的信息。

#### 1.4.4 可理解性

- 1.4.4.1 所提供的信息的可理解性一直是制定公示制度过程中涉及的最重要问题之一(见关于可理解性测试方法的附件 5)。统一制度的目标是以预定对象易懂的方式提供信息。全球统一制度确定了协助这一过程的一些指导原则:
  - (a) 信息应以不止一个途径传达;

- (b) 制度各组成部分的可理解性应重视现有的研究和文献以及通过试验取得的任何证据;
- (c) 用来表明危险程度(严重性)的用语在不同的危险类型之间应当一致。
- 1.4.4.2 后一指导原则引起了关于如何比较长期效应(如致癌性)与物理危险(如易燃性)之间的严重性的辩论。直接比较物理危险与健康危险也许不可能,但向目标对象提供一种联系起来对待危险程度的方法并从而传达相同程度的危险关切却是可能的。

#### 1.4.4.3 可理解性测试方法

马里兰大学对文献所作的初步审查表明,关于可理解性的共同原则可被用来制定统一危险公示办法。开普敦大学已将这些发展为一种综合测试方法,以此来评估危险公示制度的可理解性(见附件 5)。除了测试个别标签组成部分外,这一方法还审议标签各组成部分的综合可理解性。据认为,在较少依靠训练来帮助提高理解力的情况下,这种方法对评估消费者警告信息的可理解性特别重要。这一测试方法还包括评估安全数据单可理解性的方法。这一方法的简要介绍见附件 5。

#### 1.4.5 翻译

关于使用文本信息的选择方案给全面性提出了又一项挑战。显而易见,在传达相同含义的同时,各种词语在翻译时应保留其全面性。国际化学品安全方案的化学安全卡方案已在以多种语言翻译标准用语方面取得经验。欧盟在翻译各种术语,确保以多种语言传达同一信息方面(例如危险、风险等)也有着经验。北美也已取得类似经验,采用关键用语的《北美紧急反应手册》现有多种语文文本。

# 1.4.6 标准化

1.4.6.1 为实现让尽可能多的国家采用这一制度的目标,全球统一制度的很多部分都基于标准方法,以便于公司的遵守和各国的执行。标准化可适用于某些标签要素——符号、信号词、危险说明、防范说明——、标签格式和颜色及安全数据单格式。

# 1.4.6.2 标准化在统一制度中的适用

关于标签,危险符号、信号词和危险说明都已标准化并分配给了每个危险类别。这些标准化要素不应变化,而且应按本文件关于每个危险种类的章节中的印制在全球统一制度标签上。关于安全数据单,《危险公示:安全数据单》一章(第 1.5 章)提供了标准的信息提供格式。对于防范信息,虽然也对其标准化问题进行了考虑,但由于没有足够的时间,未能提出详尽的建议。不过,附件 3 对防范说明和象形图进行了举例,而且将它们发展成为完全标准化的标签要素仍是一个目标。

#### 1.4.6.3 非标准化或补充信息的使用

1.4.6.3.1 在统一制度中有许多尚未标准化的其他标签要素可能也现在标签上。其中有些显然需要包括在标签上,例如防范说明。主管当局可能还要求提供额外的信息,供应商也可能主动选择增加补充信息。为确保非标准化信息的使用不导致过大的信息差异或损害全球统一制度的信息,补充信息的使用应限于下列

情况;

- (a) 补充信息提供进一步的细节而且不与标准化危险信息的有效性相矛盾或使人对其产生疑问: 或
- (b) 补充信息提供关于尚未纳入全球统一制度的危险的信息。

不论在哪种情况下,补充信息都不应降低保护标准。

1.4.6.3.2 标签制作者应有权选择在危险说明中而不是在标签的补充信息部分提供有关危险的补充信息,如接触的物理状态或途径,另见第 1.4.10.5.4.1 段。

#### 1.4.7 更新信息

1.4.7.1 所有制度都规定具体办法,以便适当和及时地对新信息作出反应并相应更新标签和安全数据单的信息。下面举例说明如何做到这一点。

# 1.4.7.2 更新信息的一般指导

- 1.4.7.2.1 供应商应对他们收到的关于某种化学品危险的"新的和重大的"信息作出反应,更新该种化学品的标签和安全数据单。新的和重大的信息指改变物质或混合物的全球统一制度分类并因此导致标签上提供的信息的改变的任何信息,或可能影响安全数据单的有关该化学品和适当控制措施的任何信息。例如,这种信息可能包括由于最近公布的文献或试验结果而获得的有关接触可能对健康产生的慢性不利影响的新信息,即使这些信息尚未引起分类的变化。
- 1.4.7.2.2 不应当在收到要求修订的信息后立即进行更新。主管当局可规定修订信息的期限。这只适用于不受制于核准机制的产品(如农药等)的标签和安全数据单。在农药标签制度中,如果标签是产品核准机制的一部分,供应商就不能自行更新供应标签。不过,在产品需服从危险货物运输要求时,使用的标签应如上所述,在收到新信息后更新。
- 1.4.7.2.3 供应商还应定期审查物质或混合物的标签或安全数据单所依据的信息,即使他们尚未得到关于该种物质或混合物的新的和重大的信息。这要求他们,例如,检索产品危险数据库存以了解新信息。主管当局可规定一个自原始编制日期起计算的时限(一般为三至五年),在此期间,供应商应审查标签和安全数据单的信息。

## 1.4.8 机密商业信息

- 1.4.8.1 采用全球统一制度的制度应当考虑需要作出哪些适当的规定以保护机密商业信息。此类规定不应损害工人或消费者的健康和安全或环境保护。与全球统一制度的其他部分一样,进口国的规则应当适用于进口物质和混合物的机密商业信息要求。
- 1.4.8.2 如果某项制度规定保护机密商业信息,主管当局应当按照国家法律和惯例建立适当的机制并考虑:

- (a) 将某些化学品或化学品种类包括在安排内是否符合制度的需要;
- (b) 应当适用什么样的"机密商业信息"定义,其中要考虑竞争对手对信息的获得、知识产权和披露活动将给雇主或供应商的经营造成的潜在损害等因素;和
- (c) 在需要保护工人或消费者的健康和安全或需要保护环境的情况下,披露机密商业信息的适当程序,以及防止进一步披露的措施。
- 1.4.8.3 按照各国的法律和惯例,不同制度之间有关保护机密商业信息的具体规定可能不同。不过,它们都应当符合以下一般原则:
  - (a) 关于标签或安全数据单上以其他方式要求的信息,机密商业信息要求应限于化学品的名称 和它们在混合物中的浓度。所有其他的信息应按要求披露在标签和(或)安全数据单上;
  - (b) 如果没有提供机密商业信息,标签或化学品安全数据单应如实说明;
  - (c) 应在接到请求后向主管当局披露机密商业信息。主管当局应根据可适用的法律和惯例保护信息的机密性;
  - (d) 如果医疗专业人员断定由于接触某种危险的化学品或化学混合物而存在医疗紧急情况,应 建立有关机制以确保供应商或雇主或主管当局及时披露治疗所需的任何具体的机密信息。 医疗专业人员应当保守信息秘密;
  - (e) 对于非紧急情况,供应商或雇主应确保向为接触某种危险化学品或化学混合物的工人或消费者提供医疗或其他安全和健康服务的安全或保健专业人员和向工人或工人代表披露秘密信息。要求信息的人应当说明要求披露的具体理由,并应同意只将信息用于消费者或工人保护的目的,并在其他情况下保守其秘密:
  - (f) 如果不披露机密商业信息的做法受到质疑,主管当局应当解决此种质疑或规定替代性的质 疑过程。供应商或雇主应负责证明主张,即不提供信息是出于保护机密商业信息的需要。

# 1.4.9 培训

对危险信息的使用者进行训练是危险公示的一个组成部分。各制度应为全球统一制度的目标对象确定适当的教育和训练,因为他们需要解读标签和(或)安全数据单信息及针对化学品危险采取适当行动。训练要求应当适合工作或接触的性质并与之相称。训练的关键目标对象包括工人、急救人员和参加制定作为风险管理系统组成部分的标签、安全数据单和危险公示战略的人员。参与危险化学品运输和供应的其他人员也需要接受不同程度的训练。此外,各制度还应考虑制定战略,教育消费者如何解读他们所使用的产品上的标签信息。

# 1.4.10 标签程序

# 1.4.10.1 范围

以下各节介绍了制定全球统一制度标签的程序,它们是:

- (a) 分配标签要素;
- (b) 印制符号;
- (c) 印制危险象形图;
- (d) 信号词;
- (e) 危险说明;
- (f) 防范说明和象形图;
- (g) 产品和供应商标识;
- (h) 多种危险和信息的先后顺序;
- (i) 表示全球统一制度标签要素的安排;
- (j) 特殊的标签安排。

#### 1.4.10.2 标签要素

关于每个危险种类的各个章节均用表格详细列述了已分配给全球统一制度每个危险类别的标签要素(符号、信号词、危险说明)。危险类别反映统一分类的标准。标签要素分配汇总表载于附件1。第1.4.10.5.4 段则进一步介绍了为考虑不同目标对象的信息需要而应作出的特殊安排。

# 1.4.10.3 印制符号

下列危险符号是全球统一制度中应当使用的标准符号。除了将用于某些健康危险的新符号,即 感叹号及鱼和树之外,它们都是《联合国关于危险货物运输的建议书:规章范本》使用的标准符号集的组 成部分。



#### 1.4.10.4 印制象形图和危险象形图

1.4.10.4.1 象形图指一种图形构成,它包括一个符号加上其他图形要素,如边界、背景图样或颜色,意在 传达具体的信息。

# 1.4.10.4.2 形状和颜色

1.4.10.4.2.1 全球统一制度使用的所有危险象形图都应是设定在某一点的方块形状。

1.4.10.4.2.2 对于运输,应当使用《联合国危险货物运输规章范本》规定的象形图(在运输条例中通常称为标签)。《联合国规章范本》规定了运输象形图的规格,包括颜色、符号、尺寸、背景对比度、补充安全信息(如危险种类)和一般格式等。运输象形图的规定尺寸至少为 100mm×100mm,但非常小的包装和高压气瓶可以例外,使用较小的象形图。运输象形图包括标签上半部的符号。《联合国规章范本》要求将运输象形图印刷或附在背景有色差的包装上。以下例子是按照《联合国规章范本》制作的典型标签,用来标识易燃液体危险:



# 《联合国规章范本》中易燃液体的象形图(符号:火焰:黑色或白色;背景:红色; 下角为数字3:最小尺寸100mm×100mm。)

1.4.10.4.2.3 全球统一制度(不是《联合国关于危险货物运输的建议书:规章范本》)规定的象形图,应当使用黑色符号加白色背景,红框要足够宽,以便醒目。不过,如果此种象形图用在不出口的包装的标签上,主管当局也可给予供应商或雇主酌处权,让其自行决定是否使用黑边。此外,在包装不为《规章范本》所覆盖的其他使用背景下,主管当局也可允许使用《联合国关于危险货物运输的建议书:规章范本》的象形图。以下例子是全球统一制度的一个象形图,用来标识皮肤刺激物。



皮肤刺激物象形图

### 1.4.10.5 分配标签要素

# 1.4.10.5.1 《联合国危险货物运输规章范本》所覆盖的包装所需要的信息

在出现《联合国危险货物运输规章范本》象形图的标签上,不应出现全球统一制度的象形图。 危险货物运输不要求使用的全球统一制度象形图不应出现在散货箱、公路车辆或铁路货车/罐车上。

# 1.4.10.5.2 全球统一制度标签所需的信息

# (a) 信号词

信号词指标签上用来表明危险的相对严重程度和提醒读者注意潜在危险的单词。全球统一制度使用的信号词是"危险"和"警告"。"危险"用于较为严重的危险类别(即主要用于第 1 和第 2 类),而"警告"用于较轻的类别。关于每个危险种类的各个章节均以图表详细列出了已分配给全球统一制度每个危险类别的信号词。

# (b) 危险说明

危险说明指分配给一个危险种类和类别的短语,用来描述一种危险产品的危险性质,在情况合

适时还包括其危险程度。关于每个危险种类的各个章节均以标签要素表详细列出了已分配给全球统一制度每个危险类别的危险说明。

### (c) 防范说明和象形图

防范说明指一个短语(和(或)象形图),说明建议采取的措施,以最大限度地减少或防止因接触某种危险物质或因对它存储或搬运不当而产生的不利效应。全球统一制度的标签应当包括适当的防范信息,但防范信息的选择权属于标签制作者或主管当局。附件3载有可以使用的防范说明的例子和在主管当局允许的情况下可以使用的防范象形图的例子。

# (d) 产品标识符

- (一) 在全球统一制度标签上应使用产品标识符,而且标识符应与安全数据单上使用的产品标识符相一致。如果一种物质或混合物为《联合国危险货物运输规章范本》所覆盖,包装上还应使用联合国正确的运输名称;
- (二) 物质的标签应当包括物质的化学名称。在急性毒性、皮肤腐蚀或严重眼损伤、生殖细胞诱变性、致癌性、生殖毒性、皮肤或呼吸道敏感或目标器官系统毒性出现在混合物或合金标签上时,标签上应当包括可能引起这些危险的所有成分或合金元素的化学名称。主管当局也可要求在标签上列出可能导致混合物或合金危险的所有成分或合金元素;
- (三) 如果一种物质或混合物专供工作场所使用,主管当局可选择将酌处权交给供应商,让其 决定是将化学名称列入安全数据单上还是列在标签上;
- (四) 主管当局有关机密商业信息的规则优先于有关产品标识的规则。这就是说,在某种成分 通常被列在标签上的情况下,如果它符合主管当局关于机密商业信息的标准,那就不必 将它的名称列在标签上。

#### (e) 供应商标识

标签上应当提供物质或混合物的生产商或供应商的名称、地址和电话号码。

# 1.4.10.5.3 多种危险和危险信息的先后顺序

在一种物质或混合物的危险不只是全球统一制度所列一种危险时,可适用以下安排。这无损于《目的、范围和适用》一章(第 1.1 章)所述积木原则。因此,在一种制度不在标签上提供有关特定危险的信息的情况下,应相应修改这些安排的适用性。

# 1.4.10.5.3.1 符号分配的先后顺序

对于《联合国关于危险货物运输的建议书:规章范本》所覆盖的物质和混合物,物理危险符号的先后顺序应遵循《联合国规章范本》的规则。在工作场所的各种情况中,主管当局可要求使用物理危险的所有符号。对于健康危险,适用以下先后顺序原则:

- (a) 如果适用骷髅和交叉骨,则不应出现感叹号;
- (b) 如果适用腐蚀符号,则不应出现感叹号,用以表示皮肤或眼刺激;
- (c) 如果出现有关呼吸道敏感的健康危险符号,则不应出现感叹号,用以表示皮肤敏感或皮肤或眼刺激。

#### 1.4.10.5.3.2 信号词分配的先后顺序

如果适用信号词"危险",则不应出现信号词"警告"。

# 1.4.10.5.3.3 危险说明分配的先后顺序

所有分配的危险说明都应出现在标签上。主管当局可规定它们的出现顺序。

#### 1.4.10.5.4 全球统一制度标签要素的显示安排

#### 1.4.10.5.4.1 全球统一制度信息在标签上的位置

应将全球统一制度的危险象形图、信号词和危险说明一起印制在标签上。主管当局可规定它们以及防范信息的展示布局,也可让供应商酌情处理。具体的指导和例子载于关于个别危险种类的各个章节。

有人对于标签要素应如何出现在不同的包装上表示关注。具体例子见附件6。

# 1.4.10.5.4.2 补充信息

主管当局对是否允许使用不违反第 1.4.6.3 段所述参数的补充信息拥有酌处权。主管当局可规定这种信息在标签上的位置,也可让供应商酌定。不论采用何种方法,补充信息的安排不应妨碍全球统一制度信息的识别。

#### 1.4.10.5.4.3 象形图外颜色的使用

颜色除了用于象形图中,还可用于标签的其他区域,以执行特殊的标签要求,如将《粮农组织标签指南》中的农药色带用于信号词和危险说明或用作它们的背景,或执行主管当局的其他规定。

# 1.4.10.5.5 特殊标签安排

主管当局可允许在标签和安全数据单上,或只通过安全数据单公示有关致癌物、生殖毒性和目标器官系统毒性反复接触的某些危险信息(有关这些种类的相关临界值的详细情况,见具体各章)。

同样,对于金属和合金,在它们大量而不是分散供应时,主管当局可允许只通过安全数据单公示危险信息。

#### 1.4.10.5.5.1 工作场所的标签

属于全球统一制度范围内的产品将在供应工作场所的地点贴上全球统一制度标签,在工作场所,标签应一直保留在提供的容器上。全球统一制度的标签或标签要素也应用于工作场所的容器。不过,主管当局可允许谁雇主使用替代手段,以不同的书面或显示格式向工人提供同样的信息,如果此种格式更适合于工作场所而且与全球统一制度标签能同样有效地公示信息的话。例如,标签信息可显示在工作区而不是在单个容器上。

如果危险化学品从原始供应商容器倒入工作场所的容器或系统,或化学品在工作场所生产但不用预定用于销售或供应的容器包装,通常需要使用替代手段向工人提供全球统一制度标签所载信息。在工作场所生产的化学品可以用许多不同的方法容纳或存储,例如,为了进行试验或分析而收集的小样品、包括阀门在内的管道系统、工艺过程容器或反应容器、矿车、传送带或独立的固体散装存储。采用成批制造工艺过程时,可以使用一个混合容器容纳若干不同的化学混合物。

在许多情况下,例如由于容器尺寸的限制或不能使用工艺过程容器,制作完整的全球统一制度标签并将它附着在容器上是不切实际的。在工作场所的一些情况下,化学品可能会从供应商容器中移出,这方面的部分例子有:用于实际或分析的容器、存储容器、管道或工艺过程反应系统或工人在短时限内使用化学品时使用的临时容器。对于打算立即使用的移出的化学品,可标上其主要组成部分并请使用者直接参阅供应商的标签信息和安全数据单。

所有此类制度都应确保危险公示的清楚明确。应当训练工人,使其了解工作场所使用的具体公示方法。替代方法的例子包括:将产品标识符与全球统一制度符号和其他象形图结合使用,以说明防范措施;对于复杂系统,将工艺流程图与适当的安全数据单结合使用,以标明管道和容器中所装的化学品;对于管道系统和加工设备,展示全球统一制度的符号、颜色和信号词;对于固定管道,使用永久性布告;对于批料混合容器,将批料单或处方贴在它们上面,以及在管道带上印上危险符号和产品标识符。

#### 1.4.10.5.5.2 基于伤害可能性的消费产品标签

所有制度都应使用基于危险的全球统一制度分类标准,然而主管当局可授权使用提供基于伤害可能性的信息的消费标签制度(基于风险的标签)。在后一种情况下,主管当局将制定用来确定产品使用的潜在接触和风险的程序。基于这种方法的标签提供有关认定风险的有针对性的信息但可能不包括有关慢性健康效应的某些信息(例如反复接触后的目标器官系统毒性、生殖毒性和致癌性),这些信息将出现在只基于危险的标签上。对基于风险的标签的一般原则的一般性说明载于附件 4。

# 1.4.10.5.5.3 触觉警告

如果使用触觉警告,技术规范应符合标准化组织关于危险的触觉警告的11683标准(1997年版)。

# 第1.5章

# 危险公示:安全数据单

#### 1.5.1 安全数据单在统一制度中的作用

- 1.5.1.1 安全数据单应提供关于化学物质或混合物的综合信息,供工作场所化学品控制管理框架使用。雇主和工人双方都将它作为关于包括环境危险在内的各种危险的信息源并从中获得有关安全防范的建议。这些信息是管理工作场所危险化学品的参考源。安全数据单同产品相联系,通常不能提供同产品可能最终使用的任何特定工作场所相关的具体信息,但如果产品具有专门的最终用途,安全数据单的信息可能具有更大的工作场所针对性。因此,这些信息使雇主能够(一)制定具体针对个别工作场所的积极的工人保护措施方案,其中包括训练,和(二)考虑保护环境可能需要的任何措施。
- 1.5.1.2 此外,安全数据单也为全球统一制度中其他的目标对象提供了重要的信息源。所以某些信息要素可供下述人员使用:参与危险货物运输的人员、急救人员(包括戒毒中心)、参与专业使用农药的人员和消费者。不过,这些对象还从各种其他来源获得另外的信息,如《联合国关于危险货物运输的建议书:规章范本》和针对消费者的包装插页,而且他们还将继续这样做。因此,统一标签制度的采用并不想影响针对工作场所用户的安全数据单的主要用途。

# 1.5.2 确定是否应当制作安全数据单的标准

应当为符合全球统一制度下物理、健康或环境危险统一标准的所有物质和混合物及含有符合致癌性、生殖毒性或目标器官系统毒性标准且浓度超过混合物标准所规定的安全数据单临界极限的物质的所有混合物制作安全数据单(见第 1.5.3.1 段)。主管当局还可要求为不符合危险类别标准但含有某种浓度的危险物质的混合物制作安全数据单(见第 1.5.3.1 段)。

# 1.5.3 关于编制安全数据单的一般指导

# 1.5.3.1 临界值/浓度极限值

1.5.3.1.1 应根据表 1.5.1 所示通用临界值/浓度极限值提供安全数据单。

表 1.5.1: 每个健康和环境危险种类的临界值/浓度极限值

| 危险种类          | 临界值/浓度极限值 |
|---------------|-----------|
| 急性毒性          | ∃ 1.0%    |
| 皮肤腐蚀/刺激       | ∃ 1.0%    |
| 严重眼损伤/眼刺激     | ∃ 1.0%    |
| 呼吸/皮肤敏化作用     | ∃ 1.0%    |
| 生殖细胞致突变性:第1类  | ∃ 1.0%    |
| 生殖细胞致突变性: 第2类 | ∃ 1.0%    |

| 危险种类           | 临界值/浓度极限值 |
|----------------|-----------|
| 致癌性            | ∃ 1.0%    |
| 生殖毒性           | ∃ 1.0%    |
| 目标器官系统毒性(单次接触) | ∃ 1.0%    |
| 目标器官系统毒性(反复接触) | ∃ 1.0%    |
| 危害水生环境         | ∃ 1.0%    |

- 1.5.3.1.2 正如《危险物质和混合物分类》所指出(见 1.3.3.2),可能出现这样的情况,即现有的危险数据可能证明,基于其他临界值/浓度极限值的分类比基于关于健康和环境危险种类的各章(第 3.2 章至 3.10章)所规定的通用临界值/浓度极限值的分类更合理。在此类具体临界值用于分类时,它们也应适用于编制安全数据单的义务。
- 1.5.3.1.3 有的主管当局可能要求为这样的混合物编制安全数据单:它们由于适用加和性公式而不进行急性毒性或水生毒性分类,但它们含有浓度等于或大于1%的急性有毒物质或对水生环境有毒的物质。<sup>1</sup>
- 1.5.3.1.4 按照积木原则,有些主管当局可能决定不对一个危险种类内的某些类别实行管理。在此种情况下,没有义务编制安全数据单。
- 1.5.3.1.5 一旦弄清某种物质或混合物需要安全数据单,那么需要列入安全数据单中的信息在所有情况下都应按照全球统一制度的要求提供。

#### 1.5.3.2 安全数据单的格式

- 1.5.3.2.1 安全数据单中的信息应按下列 16 个标题提供,顺序如下。
  - 1. 标识
  - 2. 危险标识
  - 3. 成分构成/成分信息
  - 4. 急救措施
  - 5. 消防措施
  - 6. 事故解除措施
  - 7. 搬运和存储
  - 8. 接触控制/人身保护

混合物分类的临界值通常由按组成物质%表示的浓度确定。在有些情况下,例如急性毒性(人类健康),临界值以急性毒性值表示。混合物的分类由基于急性毒性值(见第3.1章)和组成物质的浓度的相加计算确定。同样,急性水生毒性分类可根据急性水生毒性值(见第3.10章)和在情况适合时通过个别物质的浓度相加所得的腐蚀/刺激值(见第3.2和3.3章)来计算。当浓度等于或大于1%时,要考虑组成物质是否适用于公式。有些主管当局可能将这一临界值作为编制安数表的义务的基础。

- 9. 物理和化学特性
- 10. 稳定性和反应性
- 11. 毒理学信息
- 12. 生态学信息
- 13. 处置考虑
- 14. 运输信息
- 15. 管理信息
- 16. 其他信息

#### 1.5.3.3 安全数据单的内容

- 1.5.3.3.1 安全数据单应清楚说明用来确定危险的数据。如果可适用和可获得,表 1.5.2 中的最低限度的信息应列在安全数据单的有关标题下。<sup>2</sup> 如果在某一特定小标题下具体的信息不能适用或不能获得,则安全数据单应予以明确指出。主管当局可要求提供补充信息。
- 1.5.3.3.2 有些小标题实际上涉及到国家性或区域性信息,如"欧洲联盟委员会编号"和"职业接触极限"。 供应商或雇主应将适当的、与安全数据单所针对和产品所供应的国家或区域有关的信息收列在此类小标题 下。
- 1.5.3.3.3 有若干国际公认标准为编制安全数据单提供指导,其中包括劳工组织关于工作时使用化学品安全问题的第 177 号建议规定的标准,国际标准化组织的 ISO 11014,欧洲联盟第 94/55/EEC 号安全数据单指令和美国国家标准学会的标准 Z 400.1。关于编制安全数据单的进一步指导意见可由全球统一制度小组委员会依据这些组织的工作加以制定。

表 1.5.2: 安全数据单最低限度的信息

| 1. | 物质或化合物和供 | • | 全球统一制度产品标识符。                    |
|----|----------|---|---------------------------------|
|    | 应商的标识    | • | 其他标识手段                          |
|    |          | • | 化学品使用建议和使用限制。                   |
|    |          | • | 供应商的详细情况(包括名称、地址、电话号码等)。        |
|    |          | • | 紧急电话号码。                         |
| 2. | 危险标识     | • | 物质/混合化的全球统一制度分类和任何国家或区域信息。      |
|    |          | • | 全球统一制度标签要素,包括防范说明。(危险符号可为黑白两色的符 |
|    |          |   | 号图形或符号名称,如火焰、骷髅和交叉骨。)           |
|    |          | • | 不导致分类的其他危险(例如尘爆危险)或不为全球统一制度覆盖的其 |
|    |          |   | 他危险。                            |

<sup>&</sup>lt;sup>2</sup> 其中"可适用"指在信息可适用于安数表所覆盖的具体产品的情况下。其中"可获得"指在供应商或编制安数表的其他 实体可获得信息的情况下。

| 3. | 成分构成/成分信息                | 物质                                         |  |  |
|----|--------------------------|--------------------------------------------|--|--|
| 3. | MAN I SIM I MAN I II I I | <ul><li>● 化学名称。</li></ul>                  |  |  |
|    |                          | <ul><li>● 普通名称、同物异名等。</li></ul>            |  |  |
|    |                          | <ul><li>化学文摘社登记号码、欧洲联盟委员会编号等。</li></ul>    |  |  |
|    |                          | <ul><li>本身已经分类并有助于物质分类的杂质和稳定添加剂。</li></ul> |  |  |
|    |                          | 混合物                                        |  |  |
|    |                          | ● 在全球统一制度含义范围内具有危险和存在量超过其临界水平的所有           |  |  |
|    |                          | 成分的化学名称和浓度或浓度范围。                           |  |  |
|    |                          | <b>注</b> :对于成分信息,主管当局关于机密商业信息的规则优先于关于产品标   |  |  |
|    |                          | 识的规则。                                      |  |  |
| 4. | 急救措施                     | • 注明必要的措施,按不同的接触途径细分,即吸入、皮肤和眼接触及摄          |  |  |
|    |                          | 入。                                         |  |  |
|    |                          | ● 最重要的急性和延迟症状/效应。                          |  |  |
|    |                          | • 必要时注明要立即就医及所需特殊治疗。                       |  |  |
| 5. | 消防措施                     | • 适当(和不适当)的灭火介质。                           |  |  |
|    |                          | • 化学品产生的具体危险(如任何危险燃烧品的性质)。                 |  |  |
|    |                          | • 消防人员的特殊保护设备和防范措施。                        |  |  |
| 6. | 事故排除措施                   | • 人身防范、保护设备和应急程序。                          |  |  |
|    |                          | ● 环境防范措施。                                  |  |  |
|    |                          | • 抑制和清洁的方法和材料。                             |  |  |
| 7. | 搬运和存储                    | • 安全搬运的防范措施。                               |  |  |
|    |                          | • 安全存储的条件,包括任何不相容性。                        |  |  |
| 8. | 接触控制/人身保护                | • 控制参数,如职业接触极限值或生物极限值。                     |  |  |
|    |                          | <ul><li>● 适当的工程控制。</li></ul>               |  |  |
|    |                          | • 个人保护措施,如人身保护设备。                          |  |  |
| 9. | 物理和化学特性                  | • 外观(物理状态、颜色等)。                            |  |  |
|    |                          | ● 气味。                                      |  |  |
|    |                          | ● 气味阀值。                                    |  |  |
|    |                          | ● PH 值。                                    |  |  |
|    |                          | ● 熔点/凝固点。                                  |  |  |
|    |                          | • 初始沸点和沸腾范围。                               |  |  |
|    |                          | ● 闪点。                                      |  |  |
|    |                          | • 蒸发速率。                                    |  |  |
|    |                          | ● 易燃性(固态、气态)。                              |  |  |
|    |                          | • 上下易燃极限或爆炸极限。                             |  |  |
|    |                          | • 蒸气压力。                                    |  |  |
|    |                          | • 蒸气密度。                                    |  |  |
|    |                          | ● 相对密度。                                    |  |  |

|     |               | ● 可溶性。                                     |
|-----|---------------|--------------------------------------------|
|     |               | ● 分配系数: n-辛醇/水。                            |
|     |               | <ul><li>● 自动点火温度。</li></ul>                |
|     |               | <ul><li>◆ 分解温度。</li></ul>                  |
| 10. | <br>  稳定性和反应性 | <ul><li>◆ 化学稳定性。</li></ul>                 |
| 10. |               | ● 危险反应的可能性。                                |
|     |               | ● 避免的条件(如静态卸载、冲击或振动)。                      |
|     |               | <ul><li>● 不相容材料。</li></ul>                 |
|     |               | ● 危险的分解产品。                                 |
| 11. | <br>  毒理学信息   | 简洁但完整和全面地说明各种毒理学(健康)效应和可用来确定这些效应           |
| 11. | 母娃子问心         | 的现有数据,其中包括:                                |
|     |               | ● 关于可能的接触途径的信息(吸入、摄入、皮肤和眼接触);              |
|     |               | • 有关物理、化学和毒理学特点的症状;                        |
|     |               |                                            |
|     |               | 延迟和即时效应以及长期和短期接触引起的慢性效应; 基地的数值度量(加分类基础化)值) |
| 10  | 4. 木 / c 白    | ● 毒性的数值度量(如急性毒性估计值)。                       |
| 12. | 生态信息          | • 生态毒性(水生和陆生,如果有)。                         |
|     |               | ● 持久性和降解性。                                 |
|     |               | ● 生物积累潜力。<br>- 生物积累潜力。                     |
|     |               | ● 在土壤中的流动性。<br>### 不可以 ***                 |
|     |               | ● 其他不利效应。                                  |
| 13. | 处置考虑          | • 废物残留的说明和关于它们的安全搬运和处置方法的信息,包括任何污          |
|     |               | 染包装的处置。                                    |
| 14. | 运输信息          | <ul><li>联合国编号。</li></ul>                   |
|     |               | <ul><li>联合国专有的装运名称。</li></ul>              |
|     |               | ● 运输危险种类。                                  |
|     |               | ● 包装组,如果适用。                                |
|     |               | ● 海洋污染物(是/否)。                              |
|     |               | • 在其房地内外进行运输或传送时,用户需要了解或需要遵守的特殊防范          |
|     |               | 措施。                                        |
| 15. | 管理信息          | ● 针对有关产品的安全、健康和环境条例。                       |
| 16. | 其他信息,包括关于     |                                            |
|     | 安全数据单编制和      |                                            |
|     | 修订的信息         |                                            |