Economic and Social Council

TRANS/WP.15/AC.1/80/Add. 7
11 April 2000

ENGLISH

Original: ENGLISH AND FRENCH

ECONOMIC COMMISSION FOR EUROPE

INLAND TRANSPORT COMMITTEE

Working Party on the Transport of Dangerous Goods
Joint Meeting of the RID Safety Committee and the
Working Party on the Transport of Dangerous Goods

REPORT OF THE SESSION
Held in Geneva from 13 to 24 March 2000
Addendum 7

Chapter 6.6 of the draft restructured ADR

REQUIREMENTS FOR THE USE AND TESTING OF LARGE PACKAGINGS

Text adopted by the Joint Meeting

The secretariat reproduces hereunder the text adopted by the Joint Meeting for Chapter 6.6 of the restructured ADR. The corresponding text of Chapter 6.6 of RID will be reproduced by the Central Office for International Carriage by Rail (OCTI) under the symbol OCTI/RID/GT/III/2000-A/Add.7.

REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF LARGE PACKAGINGS

6.6.1 General

6.6.1.1 The requirements of this Chapter do not apply to:

- packagings for Class 2, except large packagings for articles, including aerosols;
- packagings for Class 6.2, except large packagings for clinical waste of UN No.3291;
- Class 7 packages containing radioactive material.
6.6.1.2 Large packagings shall be manufactured and tested under a quality assurance programme which satisfies the competent authority in order to ensure that each manufactured packaging meets the requirements of this Chapter.

6.6.2 Code for designating types of large packagings

The code used for large packagings consist of:
(a) Two Arabic numerals:

50 for rigid large packagings; or
51 for flexible large packagings; and
(b) A capital letter in Latin character indicating the nature of the material, e.g. wood, steel etc. The capital letters used shall be those shown in 6.1.2.6.

6.6.3 Marking

6.6.3.1 Primary marking. Each large packaging manufactured and intended for use in accordance with the provisions of ADR shall bear durable and legible markings showing:
(a) The United Nations packaging symbol

For metal large packagings on which the marking is stamped or embossed, the capital letters "UN" may be applied instead of the symbol;
(b) The number "50" designating a large rigid packaging or "51" for flexible large packagings, followed by the material type in accordance with 6.5.1.4.1(b);
(c) A capital letter designating the packing group(s) for which the design type has been approved:

X for packing groups I, II and III
Y for packing groups II and III
Z for packing group III only;
(d) The month and year (last two digits) of manufacture;
(e) The State authorising the allocation of the mark; indicated by the distinguishing sign for motor vehicles in international traffic ${ }^{1}$;
(f) The name or symbol of the manufacturer and other identification of the large packagings as specified by the competent authority;
(g) The stacking test load in kg. For large packagings not designed for stacking the figure " 0 " shall be shown;
(h) The maximum permissible gross mass in kilograms.

The primary marking required above shall be applied in the sequence of the sub-paragraphs.
6.6.3.2 Examples of the marking:
$\left(\begin{array}{l}\text { (i) } \\ \text { n } \\ 2500 / 1000\end{array}\right.$

$\binom{$ u }{$\mathbf{n}} \quad \begin{aligned} & 51 \mathrm{H} / \mathrm{Z} / 0697 / \mathrm{S} / 1999 \\ & 0\end{aligned}$

For a large steel packaging suitable for stacking; stacking load: 2500 kg ; maximum gross mass: 1000 kg .

For a large plastics packaging not suitable for stacking; maximum gross mass: 800 kg .

For a large flexible packaging not suitable for stacking; maximum gross mass: 500 kg .

6.6.4 Specific requirements for large packagings

6.6.4.1 Specific requirements for metal large packagings

50A steel
50B aluminium
50 N metal (other than steel or aluminium)
6.6.4.1.1 The large packaging shall be made of suitable ductile metal in which the weldability has been fully demonstrated. Welds shall be skillfully made and afford complete safety. Low-temperature performance shall be taken into account when appropriate.
6.6.4.1.2 Care shall be taken to avoid damage by galvanic action due to the juxtaposition of dissimilar metals.

6.6.4.2 Specific requirements for flexible material large packagings

$1 \quad$ Distinguishing sign for motor vehicles in international traffic prescribed in the Vienna Convention on Road Traffic (1968).
page 4

> 51 H flexible plastics
> 51 M flexible paper
6.6.4.2.1 The large packaging shall be manufactured from suitable materials. The strength of the material and the construction of the flexible large packagings shall be appropriate to its capacity and its intended use.
6.6.4.2.2 All materials used in the construction of flexible large packagings of types 51M shall, after complete immersion in water for not less than 24 hours, retain at least 85% of the tensile strength as measured originally on the material conditioned to equilibrium at 67% relative humidity or less.
6.6.4.2.3 Seams shall be formed by stitching, heat sealing, glueing or any equivalent method. All stitched seam-ends shall be secured.
6.6.4.2.4 Flexible large packagings shall provide adequate resistance to ageing and to degradation caused by ultraviolet radiation or the climatic conditions, or by the substance contained, thereby rendering them appropriate to their intended use.
6.6.4.2.5 For plastics flexible large packagings where protection against ultraviolet radiation is required, it shall be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives shall be compatible with the contents and remain effective throughout the life of the large packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.
6.6.4.2.6 Additives may be incorporated into the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.
6.6.4.2.7 When filled, the ratio of height to width shall be not more than $2: 1$.

6.6.4.3 Specific requirements for plastics large packagings

50 H rigid plastics
6.6.4.3.1 The large packaging shall be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material shall be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance shall be taken into account when appropriate. Any permeation of the substance contained shall not constitute a danger under normal conditions of transport.
6.6.4.3.2 Where protection against ultraviolet radiation is required, it shall be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives shall be compatible with the contents and remain effective throughout the life of the outer packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.
6.6.4.3.3 Additives may be incorporated in the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.6.4.4 Specific requirements for fibreboard large packagings

50G rigid fibreboard
6.6.4 4.1 Strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) shall be used, appropriate to the capacity of the large packagings and to their intended use. The water resistance of the outer surface shall be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than $155 \mathrm{~g} / \mathrm{m}^{2}$ - see ISO535:1991. It shall have proper bending qualities. Fibreboard shall be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting or corrugated fibreboard shall be firmly glued to the facings.
6.6.4.4.2 The walls, including top and bottom, shall have a minimum puncture resistance of 15 J measured according to ISO 3036:1975.
6.6.4.4.3 Manufacturing joins in the outer packaging of large packagings shall be made with an appropriate overlap and shall be taped, glued, stitched with metal staples or fastened by other means at least equally effective. Where joins are effected by gluing or taping, a water resistant adhesive shall be used. Metal staples shall pass completely through all pieces to be fastened and be formed or protected so that any inner liner cannot be abraded or punctured by them.
6.6.4.4.4 Any integral pallet base forming part of a large packaging or any detachable pallet shall be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.
6.6.4.4.5 The pallet or integral base shall be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.
6.6.4.4.6 The body shall be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface shall be free from sharp protrusions that might damage the large packaging.
6.6.4.4.7 Strengthening devices such as timber supports to increase stacking performance may be used but shall be external to the liner.
6.6.4.4.8 Where large packagings are intended for stacking, the bearing surface shall be such as to distribute the load in a safe manner.

6.6.4.5 Specific requirements for wooden large packagings

50C natural wood
50D plywood
50F reconstituted wood
6.6.4.5.1 The strength of the materials used and the method of construction shall be appropriate to the capacity and intended use of the large packagings.
6.6.4.5.2 Natural wood shall be well seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the large packagings. Each part of the large packagings shall consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when a suitable method of glued assembly is used as for instance Lindermann joint, tongue and groove joint, ship lap or rabbet joint; or butt joint with at least two corrugated metal fasteners at each joint, or when other methods at least equally effective are used.
6.6.4.5.3 Large packagings of plywood shall be at least 3-ply. They shall be made of well seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the large packaging. All adjacent plies shall be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of the large packaging.
6.6.4.5.4 Large packagings of reconstituted wood shall be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.
6.6.4.5.5 Large packagings shall be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.
6.6.4.5.6 Any integral pallet base forming part of a large packaging or any detachable pallet shall be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.
6.6.4.5.7 The pallet or integral base shall be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.
6.6.4.5.8 The body shall be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface shall be free from sharp protrusions that might damage the large packaging.
6.6.4.5.9 Strengthening devices such as timber supports to increase stacking performance may be used but shall be external to the liner.
6.6.4.5.10 Where large packagings are intended for sacking, the bearing surface shall be such as to distribute the load in a safe manner.

6.6.5 Test requirements for large packagings

6.6.5.1 Performance and frequency of test

6.6.5.1.1 The design type of each large packaging shall be tested as provided in 6.6.5.3 in accordance with procedures established by the competent authority.
6.6.5.1.2 Tests shall be successfully performed on each large packaging design type before such a packaging is used. A large packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes large packagings which differ from the design type only in their lesser design height.
6.6.5.1.3 Tests shall be repeated on production samples at intervals established by the competent authority. For such tests on fibreboard large packagings, preparation at ambient conditions is considered equivalent to the provisions of 6.6.5.2.3.
6.6.5.1.4 Tests shall also be repeated after each modification which alters the design, material or manner of construction of large packagings.
6.6.5.1.5 The competent authority may permit the selective testing of large packagings that differ only in minor respects from a tested type, e.g. smaller sizes of inner packagings or inner packagings of lower net mass; and large packagings which are produced with small reductions in external dimension(s).
page 7
6.6.5.1.6 Where a large packaging has been successfully tested with different types of inner packagings, a variety of such different inner packagings may also be assembled in this large packaging. In addition, provided an equivalent level of performance is maintained, the following variations in inner packagings are allowed without further testing of the package:
(a) Inner packagings of equivalent or smaller size may be used provided:
(i) The inner packagings are of similar design to the tested inner packagings (e.g. shape - round, rectangular, etc);
(ii) The material of construction of the inner packagings (glass, plastics, metal etc.) offers resistance to impact and stacking forces equal to or greater than that of the originally tested inner packaging;
(iii) The inner packagings have the same or smaller openings and the closure is of similar design (e.g. screw cap, friction lid, etc);
(iv) Sufficient additional cushioning material is used to take up void spaces and to prevent significant movement of the inner packagings; and
(v) Inner packagings are oriented within the large packagings in the same manner as in the tested package;
(b) A lesser number of the tested inner packagings, or of the alternative types of inner packagings identified in (a) above, may be used provided sufficient cushioning is added to fill the void space(s) and to prevent significant movement of the inner packagings.
6.6.5.1.7 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced large packagings meet the requirements of the design type tests.
6.6.5.1.8 Provided the validity of the test results is not affected and with the approval of the competent authority, several tests may be made on one sample.

6.6.5.2 Preparation for testing

6.6.5.2.1 Tests shall be carried out on large packagings prepared as for transport including the inner packagings or articles used. Inner packagings shall be filled to not less than 98% of their maximum capacity for liquids or 95% for solids. For large packagings where the inner packagings are designed to carry liquids and solids, separate testing is required for both liquid and solid contents. The substances in the inner packagings or the articles to be transported in the large packagings may be replaced by other material or articles except where this would invalidate the results of the tests. When other inner packagings or articles are used they shall have the same physical characteristics (mass, etc) as the inner packagings or articles to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.
6.6.5.2.2 Large packagings made of plastics materials and large packagings containing inner packagings of plastic materials - other than bags intended to contain solids or articles - shall be drop tested when the temperature of the test sample and its contents has been reduced to $-18{ }^{\circ} \mathrm{C}$ or lower. This conditioning may be disregarded if the materials in question are of sufficient ductility and tensile strength at low temperatures. Where test sample are prepared in this way, the conditioning in 6.6.5.2.3 may be waived. Test liquids shall be kept in the liquid state by the addition of anti-freeze if necessary.
6.6.5.2.3 Large packagings of fibreboard shall be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h). There are three options, one of which shall be chosen.
page 8

The preferred atmosphere is $23{ }^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ and $50 \% \pm 2 \%$ r.h. The two other options are: $20{ }^{\circ} \mathrm{C}$ $\pm 2{ }^{\circ} \mathrm{C}$ and $65 \% \pm 2 \%$ r.h.; or $27^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ and $65 \% \pm 2 \%$ r.h.

Note: Average values shall fall within these limits. Short term fluctuations and measurement limitations may cause individual measurements to vary by up to $\pm 5 \%$ relative humidity without significant impairment of test reproducibility.

6.6.5.3 Test requirements

6.6.5.3.1 Bottom lift test

6.6.5.3.1.1 Applicability

For all types of large packagings which are fitted with means of lifting from the base, as a design type test.

6.6.5.3.1.2 Preparation of large packagings for test

The large packagings shall be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed.

6.6.5.3.1.3 Method of testing

The large packagings shall be raised and lowered twice by a lift truck with the forks centrally positioned and spaced at three quarters of the dimension of the side of entry (unless the points of entry are fixed). The forks shall penetrate to three quarters of the direction of entry. The test shall be repeated from each possible direction of entry.
6.6.5.3.1.4 Criteria for passing the test

No permanent deformation which renders the large packagings unsafe for transport and no loss of contents.

6.6.5.3.2 Top lift test

6.6.5.3.2.1 Applicability

For types of large packagings which are intended to be lifted from the top and fitted with means of lifting, as a design type test.

6.6.5.3.2.2 Preparation of large packagings for test

The large packagings shall be loaded to twice its maximum permissible gross mass.

6.6.5.3.2.3 Method of testing

The large packagings shall be lifted in the manner for which it is designed until clear of the floor and maintained in that position for a period of five minutes.
6.6.5.3.2.4 Criteria for passing the test

No permanent deformation which renders the large packagings unsafe for transport and no loss of contents.

6.6.5.3.3 Stacking test

6.6.5.3.3.1 Applicability

For all types of large packagings which are designed to be stacked on each other, as a design type test.

6.6.5.3.3.2 Preparation of large packagings for test

The large packagings shall be filled to its maximum permissible gross mass.

6.6.5.3.3.3 Method of testing

The large packagings shall be placed on its base on level hard ground and subjected to a uniformly distributed superimposed test load (see 6.6.5.3.3.4) for a period of at least five minutes, large packagings of wood, fibreboard and plastic materials for a period of 24 h .

6.6.5.3.3.4 Calculation of superimposed test load

The load to be placed on the large packagings shall be 1.8 times the combined maximum permissible gross mass of the number of similar large packagings that must be stacked on top of the large packagings during transport.

6.6.5.3.3.5 Criteria for passing the test

No permanent deformation which renders the large packagings unsafe for transport and no loss of contents.

6.6.5.3.4 Drop test

6.6.5.3.4.1 Applicability

For all types of large packagings as a design type test.

6.6.5.3.4.2 Preparation of large packagings for testing

The large packagings shall be filled in accordance with 6.6.5.2.1

6.6.5.3.4.3 Method of testing

The large packagings shall be dopped onto a rigid, non-resilient, smooth, flat and horizontal surface, in such a manner as to ensure that the point of impact is that part of the base of the large packagings considered to be the most vulnerable.

6.6.5.3.4.4 Drop height

Packing group I	Packing group II	Packing group III

page 10

1.8 m	1.2 m	0.8 m

Note: Large packagings for substances and articles of Class 1, self-reactive substances of Class 4.1 and organic peroxides of Class 5.2 shall be tested at the packing group II performance level.

6.6.5.3.4.5 Criteria for passing the test

6.6.5.3.4.5.1 The large packagings shall not exhibit any damage liable to affect safety during transport. There shall be no leakage of the filling substance from inner packaging(s) or article(s).
6.6.5.3.4.5.2 No rupture is permitted in large packagings for articles of Class 1 which would permit the spillage of loose explosive substances or articles from the large packagings.
6.6.5.3.4.5.3 Where a large packaging undergoes a drop test the sample passes the test if the entire contents are retained even if the closure is no longer sift-proof.

6.6.5.4 Certification and test report

6.6.5.4.1 In respect of each design type of large packagings a certificate and mark (as in 6.6.3) shall be issued attesting that the design type including its equipment meets the test requirements.
6.6.5.4.2 A test report containing at least the following particulars shall be drawn up and shall be available to the users of the large packagings:

1 Name and address of the test facility;
2 Name and address of applicant (where appropriate);
3 A unique test report identification;
4 Date of the test report;
5 Manufacturer of the large packagings;
6 Description of the large packagings design type (e.g. dimensions, materials, closures, thickness, etc) and/or photograph(s);
7 Maximum capacity/maximum permissible gross mass;
8 Characteristics of test contents, e.g. types and descriptions of inner packagings or articles used;
9 Test descriptions and results;
10 The test report shall be signed with the name and status of the signatory.
6.6.5.4.3 The test report shall contain statements that the large packagings prepared as for transport was tested in accordance with the appropriate provisions of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report shall be available to the competent authority.

