Transmitted by the expert from Germany Informal document No. **GRB-44-4** (44th GRB, 4-6 September 2006 agenda item 1.2.1.3.) # The French/German ASEP proposal 05.09.2006 #### The Noise model - L_tyre = L_tyre_ref + a * log(v/v₀) - L_tyre_ref = L_tyre(v₀) - $v_0 = 50 \text{ km/h}$ - L_prop = L_prop_ref + b * (n − n₀) - $L_prop_ref = L_prop(n_0)$ - n₀ is determined by engine speed in gear i of Annex 3 at 50 km/h - L_prop_ref is determined by L_wot of annex 3 in gear i - **b** = 6/1000, if $n > n_0$ - b = 3/1000, if $n < n_0$ - Lprop_ref is calculated using the following equation: - Lprop_ref = 10*log(10^(0.1*L_wot_i) 10^(0.1*Lroll_50)) - L_ASEP_F (v, n) = 10 * $log(10^{(0.1 * (L_prop_ref + b * (n n_0))} + 10^{(0.1 * L_tyre_ref + a * log(v/v_0))})$ + 2 dB(A) It is an open question whether n and v should be related to the microphone plane PP', to Lmax or to the end of the test track BB'. ### **Test track** #### Results for vehicles with manual transmission ### **Propulsion noise limit curve** ## **Example** #### **Test area limitations** - Vehicle speeds between 20 km/h (v_AA') and 70 km/h (v_BB') - Engine speeds at BB' up to 2,6*pmr^{-0,29*} (s n_idle) + n_idle, but not more than 0,9* (s n_idle) + n_idle - with s rated engine speed in min-1, - n_idle idling speed in min-1 - pmr = Pn in kW/(m0 in kg +75)*1000 - pmr is the power to mass ratio index. This is the rated power of the vehicle (Pn) in kW di-vided by the kerb mass of the vehicle (m0) in kg + 75 (to account for the mass of the driver) and multiplied by 1000. # **Engine speed limitation** ### **GRB 0906** Thank you for your patience