Radioactive Material Transport Security Ann-Margret Eriksson Eklund IAEA Office of Nuclear Security

Background

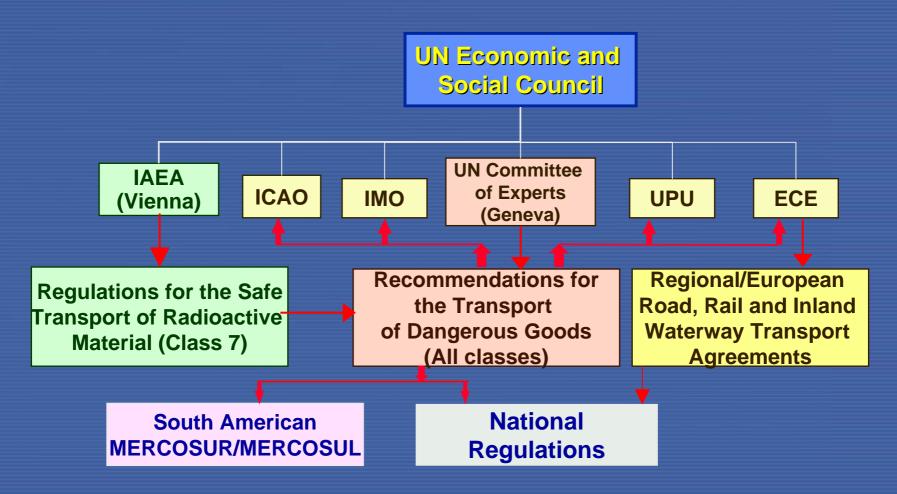
Focus has been on Safety

 The rising threat of terrorism and sabotage is now recognized and transport has been recognized as a vulnerable part of the nuclear and radioactive material supply chain.

Dangerous Goods Transport Security

- Radioactive material is one of nine classes of dangerous goods regulated in transport (both safety and security)
- Radioactive material security must be compatible with the security approaches of the consignor, carrier, port authority, consignee, etc.
- Many other dangerous goods pose equally serious potential consequences
 - Infectious substances
 - Bulk quantities of poisonous materials
 - Explosives
- Dangerous goods transport security is now being implemented worldwide

All Nine Classes of Dangerous Goods Require Appropriate Security During Transport


Class 1 Explosives	Class 6 Toxic and infectious
Class 2 Gases	substances
Class 3 Flammable liquids	Class 7 Radioactive
Class 4 Flammable solids	material
Class 5 Oxidizing substances and	Class 8 Corrosives
organic peroxides	Class 9 Miscellaneous dangerous goods

Dangerous Goods Transport Security International Roles and Responsibilities

- International Atomic Energy Agency radioactive material guidance
- UN Committee of Experts on the Transport of Dangerous Goods – recommendations for all classes (relies on the IAEA for class 7 recommendations)
- Modal organizations regulations
 - International Civil Aviation Organization
 - International Maritime Organization
- Universal Postal Union regulations
- Regional organizations regulations
 IAEA

The International Regulation of the Transport of all Dangerous Goods

Actions

- New guidance for the security in transport of nuclear and other radioactive material
- Training on guidance for security in transport of radioactive material
- Assessment procedure on security of transport of radioactive material

What are the Possible Consequences of Malicious Use of Radioactive Material?

- Acute radiation sickness or fatality
- Radiation doses to the public and emergency workers with subsequent increase in latent cancer fatality
- Contamination
 - Loss of function (area or facility)
 - Economic disruption
- Social disruption
- Psychological effects

The Transport Security Guide Considers:

- Reference doses and other parameters
- Potential Radiological consequences to determine thresholds
- Categorization methodology
- Identification of security groups

cont'd

Use of DBT

- Specific recommendations for Physical Protection measures
- The three dimensional aspect of security (security level, where and when)
- "Denial of shipment"

Purpose and Scope

- A uniform and consistent approach
- Guidelines apply to all radioactive material
- Should provide states with guidance in implementing or enhancing a state security system to protect radioactive material

Security Levels and Thresholds – Evaluating Potential Consequences

Planning basis for setting thresholds requires specifying:

- Type of event (dispersion e.g., "dirty bomb" or other dispersal device, exposure device, etc.)
- Effect of concern, scenario, and parameters
 - Radiation dose criteria
 - Area involved (1 km², 500 acres, other)
 - Exposure pathways and parameters (time in area, distance to source, etc.)
 - Modeling approach (locationspecific, theoretical, etc.)
- Defines the activity of each radionuclide that could cause such an event

Dispersion Consequence Evaluation

- A simple planar model was used to examine potential dispersion consequences ("magic" model)
- Chosen parameters
 - 1 km²
 - 1,000 mSv lifetime dose (ICRP 82)
 - IAEA TECDOC-955 dose conversion factors for long term dose from deposition

Transportation Security Consequence Evaluation

$$A = \frac{D \times Area}{CF_{4} \times RF} \left[\frac{1}{(OF \times SF) + (1 - OF)} \right] \times \frac{1TBq}{10^{9} kBq}$$

A = activity (TBq)
D = ICRP lifetime dose value (1000 mSv)
CF₄ = long term dose conversion factor for deposition
Area = surface area covered (10⁶ m²)
OF = occupancy factor (0.6)
SF = shielding factor (0.16)
RF = release factor (0.1)

Multiple Considerations in Setting a Transport Security Threshold

- 1. Current UN Model Regulation threshold
 - 3,000 A₁ or 3,000 A₂
 - Uses well established Q-system and A-values
- 2. Code of Conduct categories
- 3. Dispersion consequence calculations
- IAEA meetings concluded
 - 3,000 A₂ except for radionuclides included in the Code of Conduct
 - 10 D (Category 2) for radionuclides included in the Code of Conduct

Example Radioactivity Thresholds

Radionuclide	Threshold (TBq)
Am-241	0.6
Cf-252	0.2
Cs-137	1
Hg-203	3,000*
I-131	2,100*
Mo-99	1,800*
Pu-238	0.6
U _{nat}	Unlimited*

* Limited by 3,000 A₂

Security Levels

- Some materials only need Prudent Management Practices
- The threshold can be used to define materials requiring "basic" and "enhanced" security measures

		Radioactivity	Enhanced Security Measures
Increasing Radioactivity	Threshold		
		Excepted Packages,	Basic Security Measures
	LSA-I and SCO-I	Prudent Management Practices	

Security levels

- For small quantities of radioactive material transported as excepted packages, LSA-1 material or SCO-1, no specific security measures are proposed beyond the safety regulations and prudent management practices already implemented by consignors and carriers;
- For any package with contents exceeding the excepted package quantity and material other than LSA-1 and SCO-1, (but with quantities lower than 10D or 3000 A_2) a basic security level is proposed that includes some specific security measures; and
- For radioactive material packaged in significant quantities, such that it is deemed to be 'high consequence' dangerous goods (above 10D or 3000A₂), both the basic security measures and additional higher-level (i.e. enhanced) security measures should be applied.

Considerations in Setting Transport Security Measures

- Consistency with the Model Regulations
 - Two security levels (basic and enhanced)
 - Minimizes additional costs and complexity
 - Minimizes likelihood of denial of shipments
- Thresholds based on consequence evaluation and consistency with the Code of Conduct
 - 10D for radionuclides included in the Code of Conduct
 - Other radionuclides captured at the 3,000 A₂ level

Basic Transport Security Measures

General security provisions

- Competent Authority, at its discretion, should provide Threat information to operators
- Operators should consider Security Requirements
- commensurate with their responsibilities
- Transfers limited to appropriately identified carriers/consignees
- Use of appropriate security measures at in-transit storage sites
- Procedures to initiate inquiry for overdue shipments and, if lost or stolen, to initiate efforts to locate and recover

Basic Transport Security Measures (continued)

Security locks

- Secure and closed conveyances or sealed packages >500 kg secured to the vehicle
- State should consider need for additional measures for open vehicles
- Security awareness
- Security awareness training of personnel
 - Content of security awareness training
 - Verification of training
 - Record retention
- Personnel identity verification
 - Carrier personnel should carry positive identification
- Security verification of conveyances
- Security inspections of conveyances

Basic Transport Security Measures (continued)

- Written instructions with required security measures
- Security related information exchange by operators
- Trustworthiness verification ("...may be subject to...commensurate with their responsibilities")

Enhanced Security Measures

- Apply to packages exceeding thresholds
- Competent Authority should identify carriers and consignors
- All operators should develop, implement and periodically review a security plan
 - Allocation of responsibilities
 - Records of packages/materials transported
 - Review of operations and assessment of vulnerability
 - Identification of measures used to reduce security risks
 - Procedures for reporting and dealing with threats, breaches, and incidents
 - Evaluating, testing and review/update of security plan
 - Measures to ensure information security
 - Measures to limit distribution of sensitive information
 - Measures to monitor the shipment

AEA

Enhanced Security Measures (continued)

- State should assign responsibility for security plans
- Security plan may be incorporated into other plans
- Operators should ensure appropriate response plans
- Advance notification
 - Consignor should notify consignee of planned shipment, mode, and expected delivery time
 - Consignee should confirm receipt/non-receipt
 - Consignor should notify receiving/transit States (if required)

Enhanced Security Measures (continued)

Tracking devises

- When appropriate, transport telemetry or other tracking methods or devices should be used
 - Ranging from bar code to more sophisticated near realtime tracking systems
- Carrier should provide ability to communicate from conveyance
- Additional provisions for road, rail, and inland waterway
 - Carriers should ensure operational readiness of devices, equipment, etc.
 - Continuous attendance or secure parking of road conveyance

Additional Security Measures

- States should consider enhancing measures based on a DBT, prevailing threat or nature of the material, inter alia:
 - Additional training
 - Carrier licensing, approval of their security plans, and auditing
 - Use of automated real-time tracking
 - Use of guards
 - Evaluation of potential for sabotage
 - Transfer of security responsibilities during shipment
 - Review of security plans, holding exercises, etc

Minimizing the Impact of Radioactive Transport Security Compliance

- Consistency with other dangerous goods security requirements
- Consistent application
 - National regulations and interpretations that set up unique requirements have caused some carriers to opt out of carrying radioactive material
 - "Context sensitive" (i.e., flexible) application of requirements, for example to air transport
- As requirements are put into place, Competent Authorities and carriers should share experience
 - Consistent interpretation of requirements
 - Application experience and ideas for improvement

The Challenge is in the Future

- IAEA Guide "Security of Radioactive Material during Transport" has been circulated to Member states for comments
 - Specific comments will help improve the draft and minimize operational impacts
 - When finalized, it should provide a consistent approach for national and international transport security requirements

