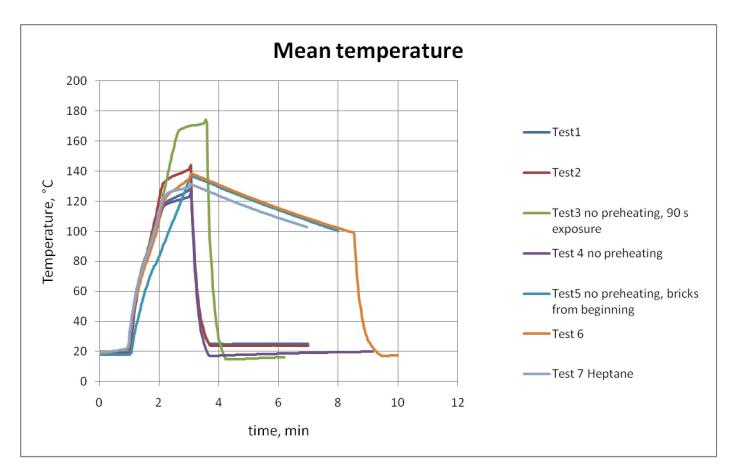
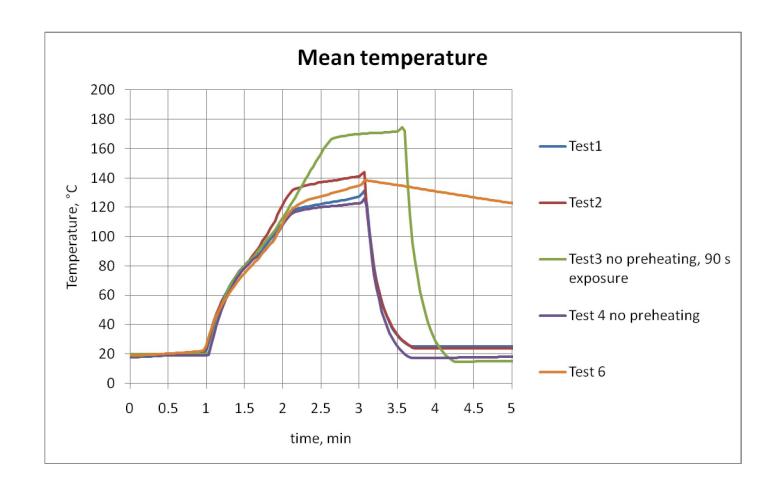
Fire resistance tests at SP

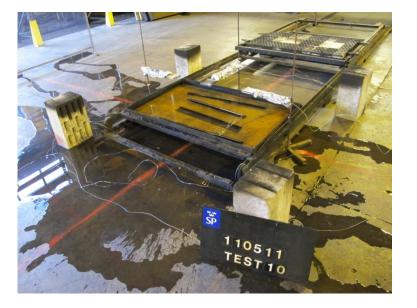
- Three sets of tests were conducted
 - Mock-up chassi, varying fuel, pre-heating time, direct exposure time and indirect exposure time. Tests were conducted to evaluate different procedures.
 - Temperature and Heat Release Rate depending on fuel (winter and summer 98 octane petrol and Heptane). Tests were conducted to assess different fuels.
 - Temperature as a function of height above fuel. Tests were conducted to establish suitable placement for a RESS in a component test.

Tests with mock-up chassi


- Test 1 swedish winter petrol, normal R34 procedure
- Test 2 same as test 1
- Test 3 winter petrol, no pre-heating, 90 s direct exposure (without bricks), 60 s indirect exposure (with bricks)
- Test 4 winter petrol, no pre-heating 60 s direct exposure, 60 s indirect exposure
- Test 5 winter petrol, no pre-heating, 120s indirect exposure with bricks in place entire time, no cooling afterwards
- Test 6 repetition of test 1
- Test 7, Heptane, normal R34 procedure


Tests with mock-up chassi

- The temperature was measured at 5 places on the "chassi"
- Heat Release Rate was also measured



Conclusions test 1-7

- Preheating makes some difference, the influence might be larger if the fuel is not kept at RT before ignition
- There is a stochaistic variation in exposure, suggest to increase direct exposure by 10 s to compensate for this and the exclusion of preheating
- Cooling afterwards influences the result, but is not a realistic scenario
 suggested that it be removed based on this
- Having the bricks in place from the beginning, i.e indirect exposure during entire time, results in a slower heating but the end temperatue is about the same as in the normal procedure, suggested to retain heating with and without screen

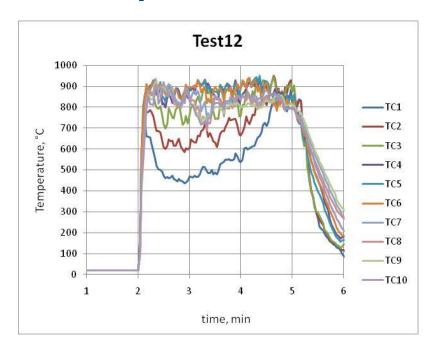
Different Fuels

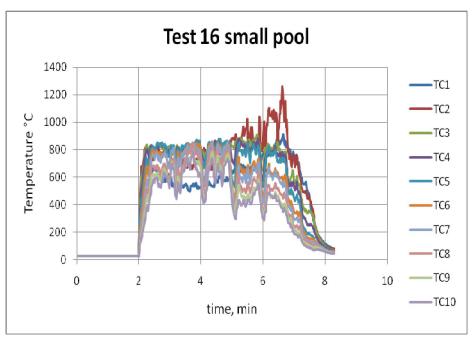
- Test 8 Swedish Winter Petrol
- Test 9 Same as test 8
- Test 10 Heptane
- Test 11 Swedish Summer Petrol

- Three Plate thermometers (measures thermal impact) were mounted above the fuel surface
- Heat Release Rate was measured

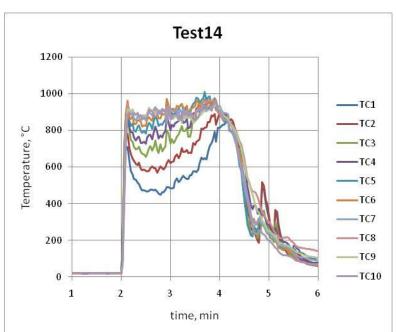
HRR Test8-11 **Different Fuels** Mean temperature Test8-11 -Test 8 —Test 9 —Test 10 Heptane ——Test 11 Summer petrol Temperature, time, min ---Test 8 Mean TC 1-3 ---Test 9 Mean TC 1-3 ——Test 10 Heptane Mean TC1-3 ——Test 11 Summer petrol Mean TC1-3 time, min

CONCLUSION → Keep commercial fuel


Component test


- Test 12 pool 1.17 m diameter (1.1 m²) winter petrol
- Test 13 pool 1.48 m diameter (1.7 m²) winter petrol
- Test 14 pool 1.67 m diameter (2.2 m²) winter petrol
- Temperature measured every 10 cm above pool
- Heat Release Rate measured

Component test



About the same temperature above 50 cm

CONCLUSION → place RESS at 50 cm

SP Technical Research Institute of Sweden

3.5.2.3 Acceptance criteria

During Phase A to D of the test, the RESS shall exhibit no evidence of fire, rupture or explosion, as defined in Table X of this document.

No dangerous voltages shall be available on the chassi or RESS.

3.5.3 Verification

The fire, rupture and explosion criteria are verified by inspection. Indicators of fire, rupture or explosion include, but are not limited to: sudden increase in flame intensity or size, emission of projectiles, loud noise.

Voltage levels towards ground shall be continuously measured during phase A to D.

If relevant after fire testing, isolation resistance shall be checked according to Annex 1.

