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• Previous work:

• development of a predictive tool to study the behaviour of different configurations tanks

• demonstration of reliability of the model by comparison with BAM experiments (2013)
BLEVE scenario

Tank is located in fire
Boiled liquid

The tank is filled

1 2

Pressure increases
Liquid level drops
Safety valve opens

3

Pressure continues to rise
Strength reduction of steel

Tank wall cracks

4

M
Pa

time

BLEVE

Behaviour diagramm of the tank

Reminder of previous work: reliability of the model demonstrated

Introduction
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INERIS Model presentation

✓ Temperature distribution in the tank shell
✓ Temperature distribution in the lading
✓ Pression evolution
✓ Level filling evolution
✓ Stress cartography in the tank shell

Failure Criterion
: 

Loss of containment

MECHANICAL MODEL THERMAL MODEL

✓Non effective protection

✓Effectiveness of the measure 
depending on time to failure (to 
be defined by authorities)

Input 
❖ Steel wall characteritics (diameter, thickness,…)
❖ Thermal protection (safety valve, coating)
❖ Lading characteristics (Level filling, Products)
❖ External thermal load characteristics

Model Results

CollapseNo collapse✓Effective protection

Methodological approach
used for INERIS model

Description
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• Models characteristics

▪ Finite elements model for the tank shell (insulation + steel  wall)

▪ Analytical approach with a 2 phase  model for the content. This model provides relevant 
results for tanks with a maximum capacity as used in transport (up to 100 - 150 m3). This 
approach is widely used in industry (ex : Vessfire software developed by Petrell As)

▪ Objective: To predict the temperature (for both phases) and pressure evolution of tanks 
(with or without coatings) when submitted to heat input.

Thermal loads

Evaporation –
condensation

Safety Valve discharge

Conduction

Liquid-Wall convection

Vapor-Wall 
convection

Description

INERIS Model presentation

Thermal transfers in LPG tanks under thermal loads
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Evaluation of a valve efficiency - Calculation results

Summary of previous calculations - Tank subjected to full fire engulfment

• Reminder: these results have been presented at RID ADR Joint meeting 03-
2017

• Common PRV considered (diameter 2’’ and Popening 16.5 bar) on LPG tank: 
volume 31m3, filling rate 50%

• Thermal loading : full fire engulfment

=> Safety valve is not efficient in that case

Full fire engulfment

Results considering a common safety valve : risk of BLEVE
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• Test of an ideal safety valve on the same tank with the same thermal loading

• This safety valve set to low pressure (8 bar) is not efficient:

• A very low applied stress is observed as expected

• Failure is due to a sharp fall of Yield stress of steel

• This result can be generalized to all filling rate

Summary of previous calculations - Tank subjected to full fire engulfment

Evaluation of a valve efficiency - Calculation results

Results considering an ideal safety valve (set to 8 bar) : risk of BLEVE due to sharp fall of Yield 
stress of steel
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Summary of previous calculations - Tank subjected to full fire engulfment

• 2 other protections are tested : thermal coating or increasing steel thickness of shell 
to 3 cm

• Thermal coating can avoid or delay BLEVE but several issues are raised concerning 
use on trucks:
• no retrofit about ageing

• behaviour with vibrations

• behaviour with various climatic conditions

• etc…

• Increasing steel thickness of shell is efficient to avoid BLEVE, but 3 cm thick shell are 
needed (unfeasible)

Results considering a thermal coating : no risk of BLEVE Results considering a 3 cm thick shell : no risk of BLEVE

Evaluation of thermal coating and increased steel thickness - Calculation results
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Conclusion on the PRV/thermal coating efficiency (RID ADR Joint meeting 03-2017) 

• Valves are not efficient for some scenarios (ex: full fire engulfment)

• Other protections (thermal coating or increasing of shell thickness) may 
delay/avoid BLEVE but may present issues (ageing, cost, etc…)

Conclusion about tanks subjected to full fire engulfment

Full fire engulfment
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Calculation assumptions

• Calculations led on tanks with safety valve only and subjected to a smaller size fire 
(localized on lower part of tank)

• New calculations are therefore led considering a smaller size fire scenario with the
following conservative parameters:

• Pool fire on lower part of tank

• Fire reaches immediately intense burning on the entire length of the truck and has an
infinite duration (a real fire can have a duration of 3 hours, and an intense burning of
30  minutes)

Summary of previous calculations - Calculation on tanks subjected to fire on lower part

Large fire localized on lower half of tank
- Conservative hypothesis-
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• Characteristics of the LPG tanks:

• Volume: 31 m3

• Common PRV – pressure relief valve- (diameter: 2’’ & Popening: 16.5 bar)

• 3 scenarios are calculated for 4 filling rates and 5 flame temperature (great 
influence on results)

• Conclusion : a LPG tank exposed to fire a lower temperature (a radiative heat flux 
from a 500°C flame) applied on lower part is able to survive when equipped with 
valve

Summary of previous calculations - Calculation on tanks subjected to fire on lower part

Calculation assumptions and results

Initial filling rate \ Flame 

temperature 900 °C 800 °C 700 °C 600 °C 500 °C

10% <400s 460s 680s 960s >2400

30% 400s 530s 810s >2400 >2400

50% 1200s
>2400s

85% >2400s
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• Model improvement : inclusion of real heat transfer phenomena
(radiation/convection) for some specific fire scenario:

• tyre fire (no propagation)

• tyre fire (with propagation)

• fire from the fuel tank

• fire from the cabin

Calculation on tanks subjected to specific fire scenario

Model presentation
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• Radiative flux was previously characterized by:

• Flame temperature

• Duration

• Heat flux applied is now characterized by

• First calculation with the FDS software

• Heat flux calculated (convection and radiation) are applied on LPG tank 
considering a space discretization 

Calculation on tanks subjected to specific fire scenario

Model presentation
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Calculation on tanks subjected to specific fire scenario

• 3D-calculations performed with FDS model developed by NIST solving physical
quantities as functions of space and time:

• CFD model of fire-driven fluid flow, relevant for low-speed, thermally-driven flow 
with an emphasis on smoke and heat transport from fires

• Based on Large-Eddy-Simulation (LES) turbulence model 

• Coded to allow massively-parallel computing on Superclusters

Example of Fire start

Model presentation : Fire computation code : FDS (Fire Dynamics Simulator)
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Calculation on tanks subjected to specific fire scenario

• General assumptions:

• Truck dimensions : cabin (2m X 2m X 3.5m) ; tank (2.5m X 7 m) ; wheels (0.8 m X 0. 35 m)

• Mesh size : 5 cm X 5 cm X 5 cm, 3 024 000 cells divided in 72 domains for parallel
computing

• Calculations performed on COBALT supercluster (1500 Tflops) of CCRT (Centre de Calcul 
Recherche et Technologie)

• Physics assumptions:

• Prescribed heat release rate based on experiments for each combustible element

• Fire propagation criterion between each combustible elements : 12 kW/m²
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Model presentation : Fire computation code : FDS (Fire Dynamics Simulator)
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Calculation on tanks subjected to specific fire scenario

4 3 2 1

8 7 6 5

9 10 11 12

13 14 15 16

17

18

17

18

Positions of numerical sensors for BLEVE calculation
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Fire locations of interest

Calculation on tanks subjected to specific fire scenario

Tyre fire (propagation)

Pool fire
Cabin fire (no propagation)

Tyre fire (no propagation)

• Characteristics of the LPG tanks:

• Volume: 31 m3

• Common PRV – pressure relief valve- (diameter: 2’’ & Popening: 16.5 bar)

• 50% filling rate
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Calculation on tanks subjected to specific fire scenario

T=3 min T=5 min

T=10 min T=20 min

Heat release evolves with time
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• Modeling of a no propagation tyre fire – only 1 tyre burning

• Many unsteady physical quantities available for input to BLEVE 
calculation : steel temperature, heat fluxes (convective, radiative, net) 
at different points of the tank

Calculation results: fire start on tyre (no propagation)

Shell temperature

Heat flux
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• Analysis of heat flux applied on point 2

• Convective/Radiative flux are in the same
proportions up to 5 minutes

• After 5 minutes convective flux can be
considered as negligible compared to radiative 
flux

Calculation on tanks subjected to specific fire scenario

Calculation results: fire start on tyre (no propagation)

4 3 2 1

8 7 6 5

Heat flux applied on tank
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• Analysis of heat flux applied on point 2

• Convective/Radiative flux are in the same
proportions up to 5 minutes

• After 5 minutes convective flux can be
considered as negligible compared to radiative 
flux

Calculation on tanks subjected to specific fire scenario

Calculation results: fire start on tyre (no propagation)

4 3 2 1

8 7 6 5

Proportion of radiative/convective flux
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• Comparison with previous calculation

• Order of magnitude of flux similar to a 500°C 
radiant flame (see slide 11)

• But with a shorter duration

Calculation on tanks subjected to specific fire scenario

Calculation results: fire start on tyre (no propagation)

4 3 2 1

8 7 6 5
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• Results: No risk of BLEVE for a tyre fire with
no propagation in this case

• Comparison with previous calculation

• Order of magnitude of flux similar to a 
500°C radiant flame

• But with a shorter duration

Calculation on tanks subjected to specific fire scenario

Calculation results: fire start on tyre (no propagation)

Tyre fire with no propagation

800°C radiative flame

500°C radiative flame
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Calculation on tanks subjected to specific fire scenario

T=2 min T=5 min

T=10 min T=15 min

Heat release evolves with time

• Many unsteady physical quantities available for input to BLEVE 
calculation : steel temperature, heat fluxes (convective, radiative, net) 
at different points of the tank

Calculation results: fire start on tyre (propagation)
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• No risk of BLEVE for a tyre fire with propagation

Calculation on tanks subjected to specific fire scenario

Calculation results: fire start on tyre (propagation)

Tyre fire with propagation
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Calculation on tanks subjected to specific fire scenario

T=10 s

T=3 min T=12 min

Heat release evolves with time

• Fire start on 500 L gasoline spill of 6 mm height (84 m²)

• Many unsteady physical quantities available for input to BLEVE 
calculation : steel temperature, heat fluxes (convective, radiative, net) 
at different points of the tank

Calculation results: fire from the fuel tank, with propagation

T=2 min
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• Risk of BLEVE after 15 minutes

• Safety valve does not prevent risk of BLEVE for this
scenario

Calculation on tanks subjected to specific fire scenario

Calculation results: fire from the fuel tank, with propagation

Fire from the fuel 
tank

Gasoline spill

Cabin

Tyres + cabin
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Calculation on tanks subjected to specific fire scenario

T=1 min

T=15 min T=20 min

Heat release evolves with time

• Many unsteady physical quantities available for input to BLEVE 
calculation : steel temperature, heat fluxes (convective, radiative, net) 
at different points of the tank

Calculation results: fire from the cabin with no propagation
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• Risk of BLEVE after 18 minutes

• Safety valve does not prevent risk of BLEVE for this
scenario

Calculation on tanks subjected to specific fire scenario

Calculation results: fire from the cabin with no propagation

Fire from cabin
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• Conclusion :
• Calculations have been conducted for tank (31m3, Common PRV – pressure relief valve- diameter: 

2’’ & Popening: 16.5 bar, 50% filling rate) subjected to some specific scenario:  

• No risk of BLEVE for a tyre fire (with propagation to other tyres or not)

• Risk of BLEVE for a fuel tank fire (pool fire with propagation to tyres and cabin)

• Risk of BLEVE for a cabin fire (with no propagation)

• It seems important to avoid propagation, especially to the cabin

• Future work:
• Continue calculation for different specific fire scenario :

• External fire coming from a different transport unit

• Modelling of damages caused by an accident in coating (small sized, scratches?)

• Study for some case thank containing one or two other gases with similar properties: ammonia, 
chlorine for example

• Assess how protecting equipments (on wheels, fuel tanks, engine, cabin…) may allow to keep 
flame temperature under the safe value. Starting to study Local protection of load from tyres and 
axles for example by steel plates

• This will allow to assess the efficiency of safety valves in terms of risk reduction

Conclusion


