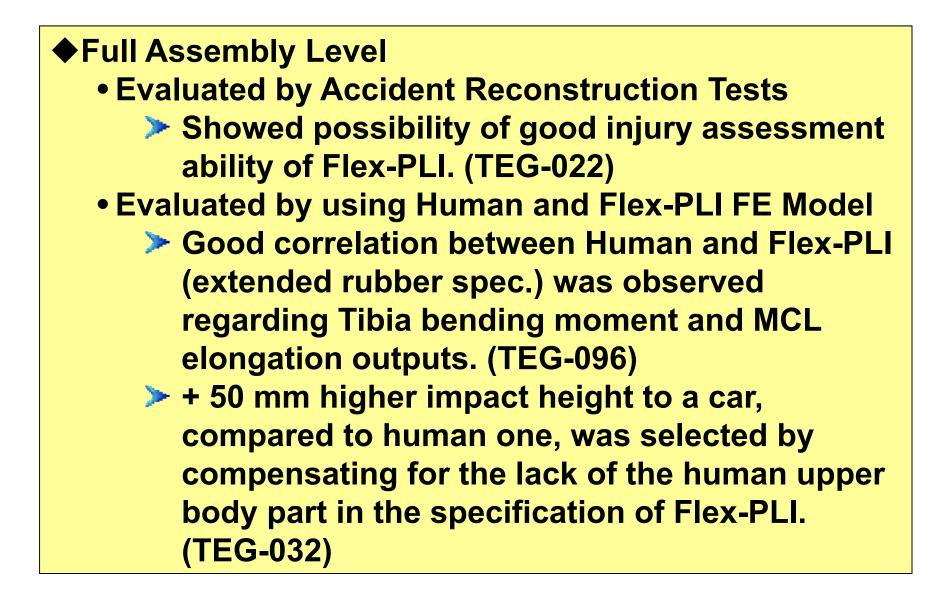
Review of the Flexible Pedestrian Legform Impactor Technical Evaluation Group (Flex-TEG) Activity

- Summary -

- ver.111021-

November 3rd, 2011 Japan

- 1. Biofidelity
- 2. Performance/Injury Criteria
- 3. Benefit
- 4. Durability
- 5. Reproducibility and Repeatability
- 6. Vehicle Countermeasures


1. Biofidelity

- 2. Performance/Injury Criteria
- 3. Benefit
- 4. Durability
- 5. Reproducibility and Repeatability
- 6. Vehicle Countermeasures

1. Biofidelity

1. Biofidelity, contd.

1. Biofidelity

2. Performance/Injury Criteria

- 3. Benefit
- 4. Durability

5. Reproducibility and Repeatability

6. Vehicle Countermeasures

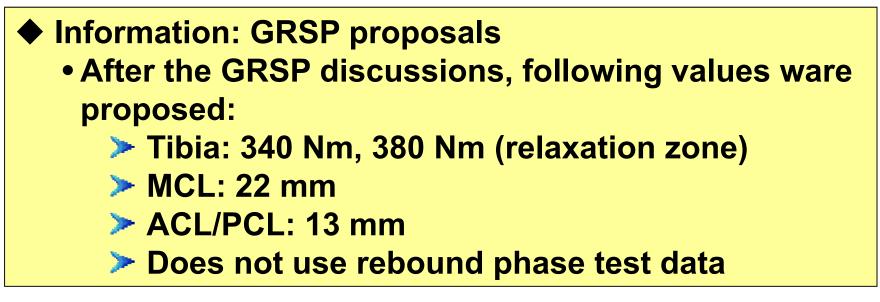
2. Performance/Injury Criteria

Discussions

 Detailed discussions were made in the Flex-TEG. (TEG-035, TEG-048, TEG-076, TEG-077, TEG-078, TEG-084, TEG-095, TEG-097, TEG-098, TEG-127, TEG-128, TEG-129, TEG-130)

Conclusions of Flex-TEG

• Finally, Flex-TEG made conclusions as follows (TEG-127):


Tibia: 340 Nm

MCL: 22 mm

ACL/PCL: seek guidance to GRSP

 Besides, Flex-TEG proposed to do not use rebound phase test data for car evaluation (TEG-130)

2. Performance/Injury Criteria

Biofidelity Performance/Injury Criteria Benefit Durability Reproducibility and Repeatability Vehicle Countermeasures

3. Benefit

Estimations

 Lower limb protection level provided by Flex-PLI was estimated by JAMA-JARI using NHTSA method (GRSP/2006/7). (TEG-049)

Results

- Following number of injured person can be decreased by introduction of Flex-PLI in U.S..
 - > 2,438 person (in pedestrian passenger vehicle (PV) accidents)
 - > 359 person (in pedestrian large truck vehicle
 - (LTV) accidents)

Biofidelity Performance/Injury Criteria Benefit Durability

5. Reproducibility and Repeatability 6. Vehicle Countermeasures

4. Durability

Evaluations

 A lot of durability tests were conducted by Flex-TEG members in many countries. (TEG-037, TEG-063, TEG-112, TEG-113)

Results

- No serious issues occurred.
- NHTSA would like to conduct additional durability test against a car which has poor performance in EEVC PLI test.

Biofidelity
 Performance/Injury Criteria
 Benefit
 Durability

5. Reproducibility and Repeatability

6. Vehicle Countermeasures

5. Reproducibility and Repeatability

Evaluations

 A numerous revaluation tests regarding reproducibility and repeatability of Flex-PLI were conducted by Flex-TEG members in many countries. (TEG-021, TEG-034, TEG-036, TEG-038, TEG-039, TEG-043, TEG-045 Rev.1, TEG-047, TEG-051 Part1-3, TEG-063, TEG-064, TEG-071, TEG-072 Rev.1, TEG-087, TEG-089, TEG-093, TEG-094, TEG-105, TEG-112, TEG-113)

Results

 Repeatability and reproducibility of Flex-PLI is accepted by Flex-TEG members.

Biofidelity
 Performance/Injury Criteria
 Benefit
 Durability
 Reproducibility and Repeata
 Vehicle Countermeasures

6. Vehicle Countermeasures

Evaluations

 Various comparison tests, Flex-PLI and EEVC PLI, were conducted by Flex-TEG members in many countries. (TEG-035, TEG-036, TEG-091, TEG-112, TEG-113)

Results

• The comparison results were not revealed concrete trend between the Flex-PLI test results and EEVC PLI test results because specifications and measurement items are differed by Flex-PLI and EEVC PLI.

Thank you for your attention!

Summary, results and important slides from all of the past Flex-TEG documents relevant to the agenda items of the IG PS2

November 3rd, 2011 Japan

- 1. Biofidelity
- 2. Performance/Injury Criteria
- 3. Benefit
- 4. Durability
- 5. Reproducibility and Repeatability
- 6. Vehicle Countermeasures

1. Biofidelity

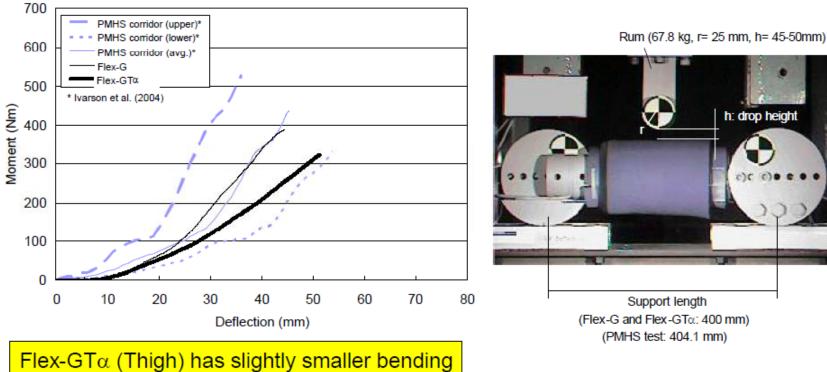
- 2. Performance/Injury Criteria
- 3. Benefit
- 4. Durability
- 5. Reproducibility and Repeatability
- 6. Vehicle Countermeasures

1. Biofidelity

- List of Relevant TEG Documents -

Doc. #	Affiliation	Version	Summary
TEG-021	JARI	Flex-GT	 Dynamic 3-point bending test of the thigh and leg of Flex-GT Dynamic knee bending test of the knee of Flex-GT Comparison with human response corridors Results Flex-GT thigh and leg bending responses fell within human response corridors Flex-GT knee bending stiffness was higher than human response corridor but lower than that of TRL-LFI
TEG-022	JARI	Flex-GT	 Kinematics comparison between Flex-G, Flex-GT and human FE model Reconstruction test of 2 full-scale PMHS tests using Flex-GT Reconstruction test of 2 car-pedestrian accidents using Flex-GT Results Flex-GT knee response was closer to that of human compared to Flex-G Reconstruction of both PMHS tests and pedestrian accidents showed a possibility that Flex-GT has a good injury assessment capability

1. Biofidelity


- List of Relevant TEG Documents -

Doc. #	Affiliation	Version	Summary
TEG-032	JAMA-JARI	Flex-GT	- Correlation study using a human FE model and a Flex-GT FE model Results
169-032	JAWA-JARI		- Impactor height of 75 mm provided best correlation by
			compensating for the lack of the upper body
	JAMA-JARI	Flex-GTR	- Development of Flex-GTR FE model
			- Analysis of injury measure correlations between human and Flex- GTR models
TEG-096			Results
			- Human-Flex-GTR correlation using 18 simplified vehicle models resulted in correlation coefficient of 0.90 for tibia and 0.55 for MCL
			- Extended rubber yielded better tibia correlation

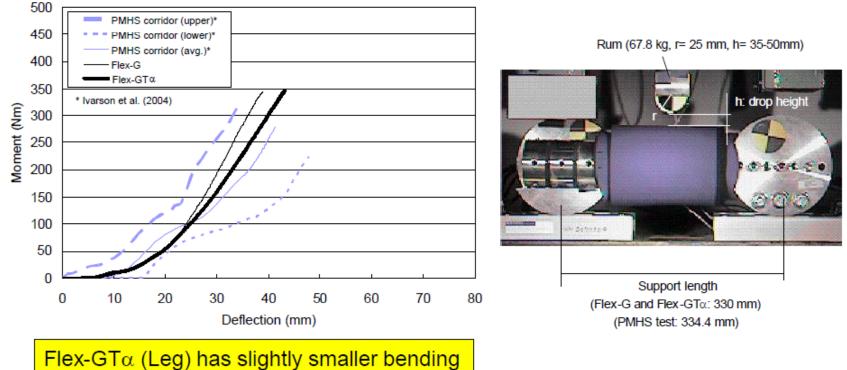
Long Bones

Bending characteristics (Thigh)

Flex-G and Flex-GTα

stiffness than that of Flex-G.

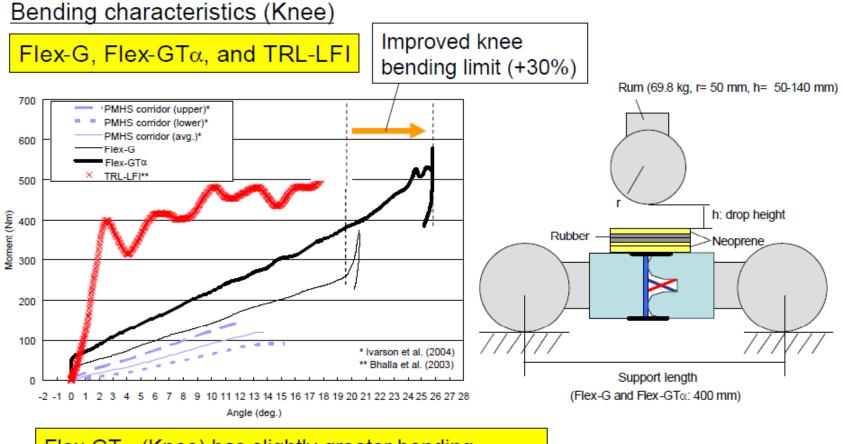
 \rightarrow The difference gives Flex-GT α a better injury assessment ability than that of Flex-G.


h: drop height

0) 0)

Long Bones

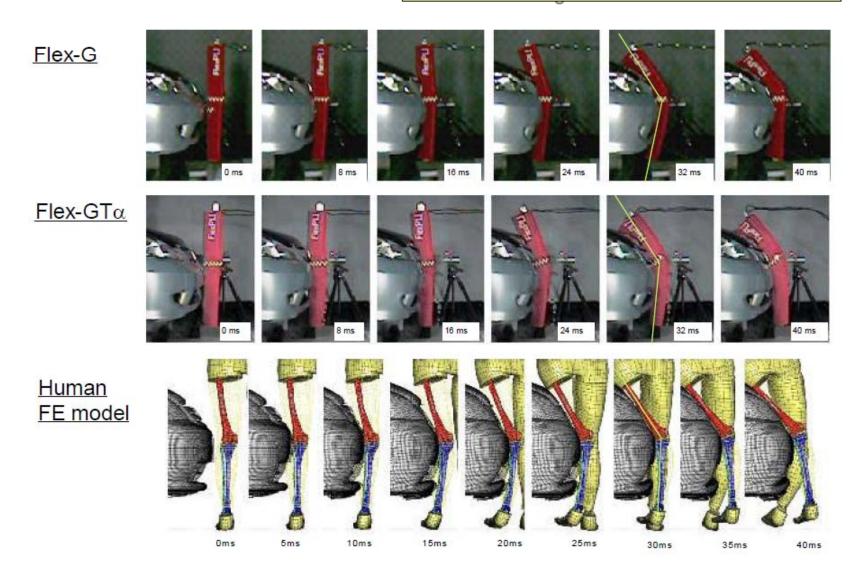
Bending characteristics (Leg)


Flex-G and Flex-GTα

stiffness than that of Flex-G.

 \rightarrow The difference gives Flex-GT α a better injury assessment ability than that of Flex-G.

Knee



Flex-GTα (Knee) has slightly greater bending stiffness than that of Flex-G (but not stiffer than that of TRL-LFI).

 \rightarrow The difference gives Flex-GT α a better injury assessment ability than that of Flex-G.

Comparison

Flex-G bending is the severest of the three.

PMHS test conditions and results

C	Car information						Pedestrian	information		
Car	Test No.	Impact speed	Gender	Age	Η _T	W _T	Lower extrimity injury			
		(m/s)		(year)	(cm)	(kg)	Thigh	Knee	Leg	
C1	Т3	8.9	Male	48	170	62	-	-	FX (fibula and tibia)	
	T4	8.9	Male	58	185	85	-	-	FX (fibula and tibia)	
C3	Y1	8.3	Male	70	167	68	-	-	FX (fibula and tibia)	

C1: Ishikawa et al. (1993), C3: Schroeder et al. (2000)

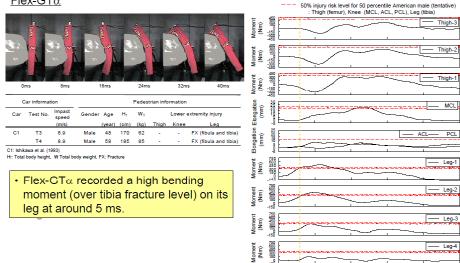
H_T: Total body height, W_T: Total body weight, FX: Fracture

Test Conditions

Reconstruction test conditions on PMHS tests

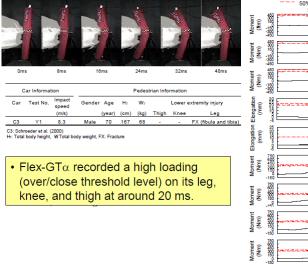
Car: C1

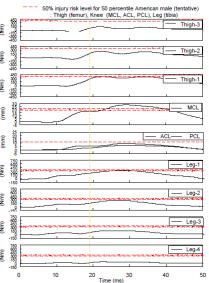
Car: C3


Car	Impact speed	Impact speed Impactor		Impact location (mm) *			
	(m/s)		horizontal	vertical (H_{KR}^{**})			
C1	8.9	$Flex\text{-}GT\alpha$	R 200	537			
C3	8.3	$Flex\text{-}GT\alpha$	R 200	bumper center height			

* Estimated from literature(C1: Ishikawa (1993), C3: Schroeder (2000)).

** H_K: Knee height relative to car.


Reconstruction Test Results (Car: C1)


Flex-GTα

Reconstruction Test Results (Car: C3)

Flex-GTα

20 30 Time (ms)

40

50

Discussion and Conclusions on Part 2

- In this study, a reconstruction test on PMHS tests was conducted.
- It has a possibility that the Flex-GT α has good injury assessment ability on PMHS tests.
- However, 1) cannot change length, mass and bending stiffness of impactor for each test, besides, 2) cannot know strength of each pedestrian leg and knee, therefore, it has a high limitation on this evaluation methodology.

Car-Pedestrian Traffic Accident Data

Car information							Pe	destrian informati	on	
Car No.	r No. Model Impact Braking		Gender	Gender Age H_T W_T Lowe			er extremity injury			
	2	(km/h)			(year)	(cm)	(kg)	Thigh	Knee	Leg
Car 2	1997	30	Activated	Male	79	150	45	FX (femur**)	-	FX (tibia*)
Car 3	1994	25	Activated	Male	76	170	48	-	-	FX (tibia*)

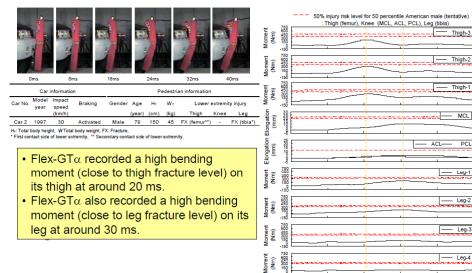
HT: Total body height, WT: Total body weight, FX: Fracture,

Car and Pedestrian Information

* First contact side of lower extremity, ** Secondary contact side of lower extremity.

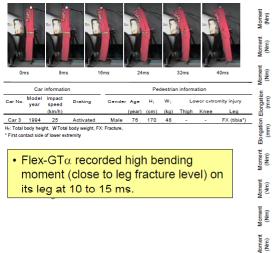
Estimated Test Conditions

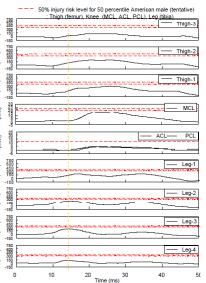
Accident Reconstruction Test conditions


Car	Impact speed	Impactor	Impact location (mm) *			
	(m/s)		horizontal	vertical (H _{KR} **)		
Car 2	8.3	Flex-GTα	L 100	439		
Car 3	6.9	Flex-GTα	L 410	510		

* Estimated from literature(ITARDA 2001, 2004).

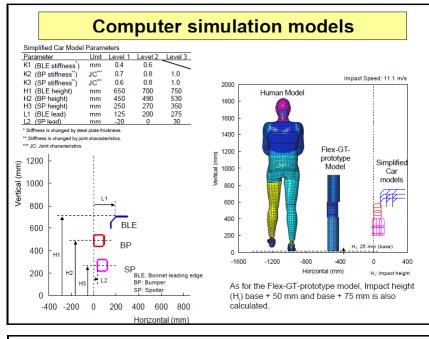
** HKR: Knee height relative to car.


Reconstruction Test Results (Car: Car2)


Flex-GTα

Reconstruction Test Results (Car: Car3)

<u>Flex-GT α </u>

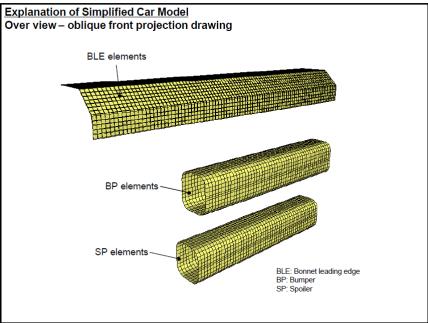

20

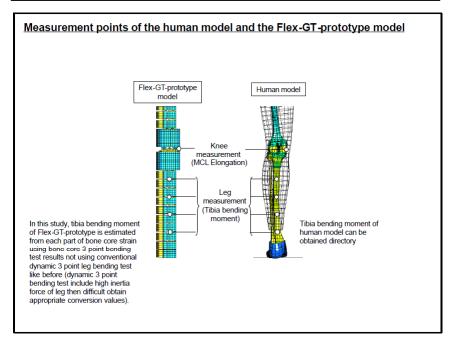
40

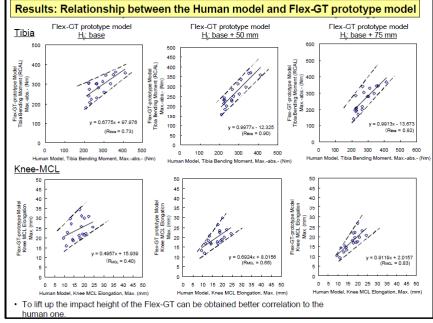
50

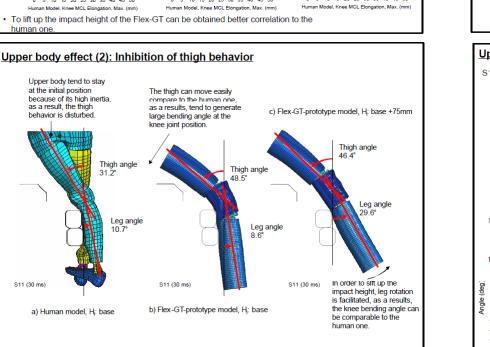
Discussion and Conclusions on Part 3

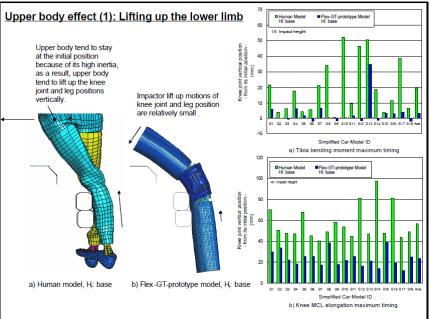
- In this study, a reconstruction test on car-pedestrian traffic accidents was conducted.
- It has a possibility that the Flex-GTα has good injury assessment ability on car-pedestrian traffic accidents.
- However, 1) cannot change length, mass and bending stiffness of impactor for each test, besides,
 2) cannot know strength of each pedestrian leg and knee, therefore, it has a high limitation on this evaluation methodology.

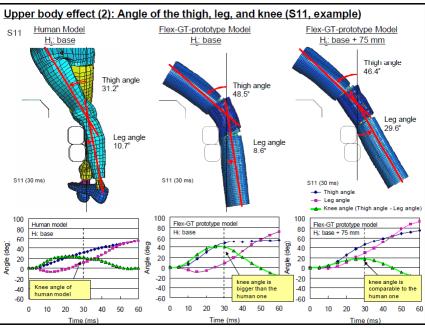


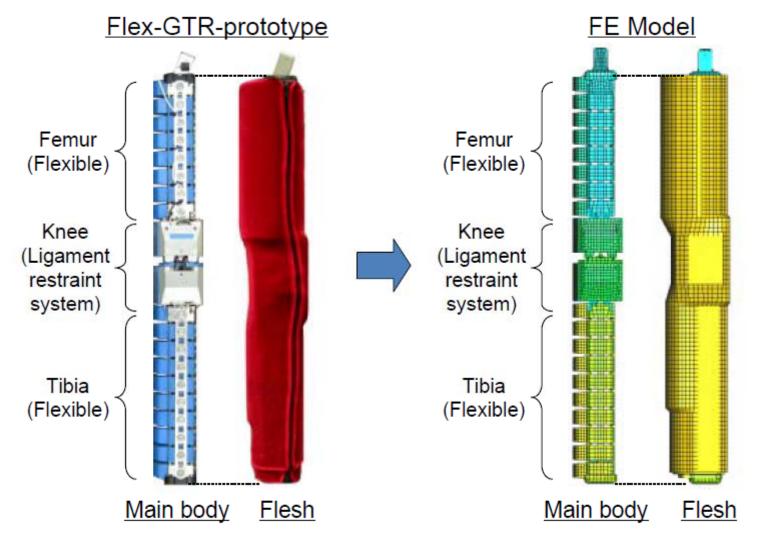

<u>Specifications of the simplified car models (total 18 types)</u> Based on design of experiment method, L18 orthogonal table is utilized

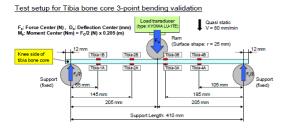

Simplified	K1	K2	K3	H1	H2	H3	L1	L2
Car Model	(BLE stiffness*)	(BP stiffness**)	(SP stiffness**)	(BLE height)	(BP height)	(SP height)	(BLE lead)	(SP lead)
ID	mm	JC***	JC***	mm	mm	mm	mm	mm
S1	0.4	0.7	0.6	650	450	250	125	-20
S2	0.4	0.7	0.8	700	490	270	200	0
S3	0.4	0.7	1.0	750	530	350	275	30
S4	0.4	0.8	0.6	650	490	270	275	30
S5	0.4	0.8	0.8	700	530	350	125	-20
S6	0.4	0.8	1.0	750	450	250	200	0
S7	0.4	1.0	0.6	700	450	350	200	30
S8	0.4	1.0	0.8	/50	490	250	275	-20
S9	0.4	1.0	1.0	650	530	270	125	0
S10	0.6	0.7	0.6	750	530	270	200	-20
S11	0.6	0.7	0.8	650	450	350	275	0
S12	0.6	0.7	1.0	700	490	250	125	30
S13	0.6	0.8	0.6	700	530	250	275	0
S14	0.6	0.8	0.8	750	450	270	125	30
S15	0.6	0.8	1.0	650	490	350	200	-20
S16	0.6	1.0	0.6	750	490	350	125	0
S17	0.6	1.0	0.8	650	530	250	200	30
S18	0.6	1.0	1.0	700	450	270	275	-20

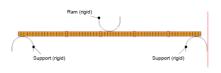

*** JC: Joint characteristics

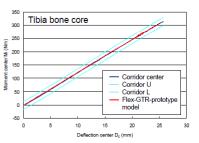

BLE: Bonnet leading edge, BP: Bumper, SP: Spoiler



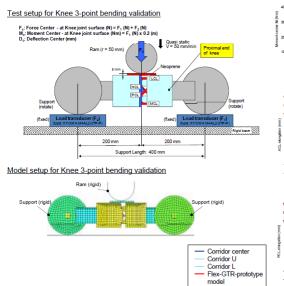


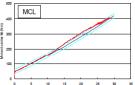


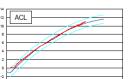

Flex-GTR-prototype and Developed FE model (Overview)



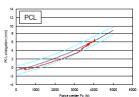
Tibia bone core 3-point bending validation




Model setup for Tibia bone core 3-point bending validation



Knee 3-point bending validation

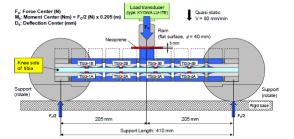


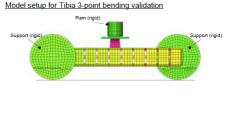
2000 3000 4000

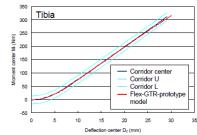
Force center F. (N

5000 6000

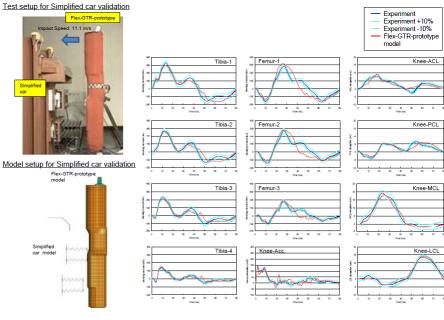
MCL elongation (mm

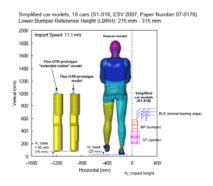


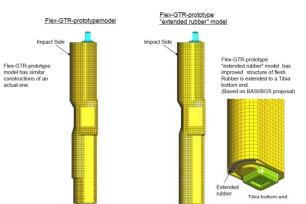

1000


0

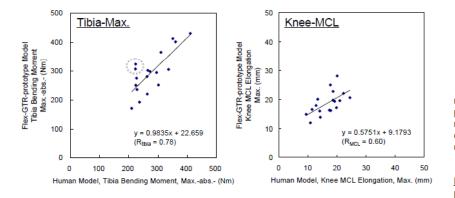
Tibia 3-point bending validation



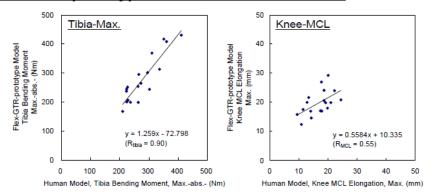




Overall validation under the Simplified Car Impact



Computer simulation models



Flex-GTR prototype model

 Flex-GTR prototype model and Flex-GTR prototype "extended rubber" model show a high correlation with the human model.

 <u>Correlation of Tibia-Max.(R_{tibia}): Flex-GTR prototype "extended rubber" model is higher than Flex-GTR prototype model. <u>Correlation of Knee-MCL(R_{MCL}): Flex-GTR prototype "extended rubber" model and Flex-GTR prototype model is comparable.
</u></u>

1. Biofidelity

2. Performance/Injury Criteria

- 3. Benefit
- 4. Durability

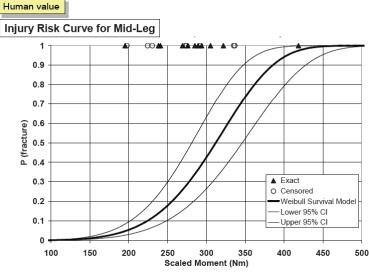
5. Reproducibility and Repeatability

6. Vehicle Countermeasures

Doc. #	Affiliation	Version	Summary
TEG-035	JAMA	Flex-GT	-Tentative injury thresholds for Flex-GT Results -Human tibia bending moment : 312 – 350 Nm, human knee bending angle : 18 – 20 deg (MCL failure) for 50% injury probability -Converted Flex-GT tentative threshold range : 299 – 337 Nm for tibia bending moment, 18 – 20 mm for MCL elongation
TEG-048	JAMA-JARI	Flex-GT	 Tentative injury thresholds for Flex-GT (TEG-035) Review of references Results Reference for tibia : Kerrigan et al. (2004), Nyquist et al. (1985) Reference for MCL : Ivarsson et al. (2004), Konosu et al. (2001)

Doc. #	Affiliation	Version	Summary
TEG-076	JAMA	Flex-GT	 Review of proposed MCL failure threshold Human-Flex-GTR correlation using simplified vehicle models including high bumper vehicles Incorporation of muscle tone effect taken into account with the threshold for TRL-LFI New proposal of 23 mm for Flex-GTR MCL elongation Results Human-Flex-GT knee response correlation analysis using FE human, Flex-GT and simplified vehicle models including high bumper vehicles The correlation function converted human MCL elongation of 15-17 mm to 19.3-21.9 mm of Flex-GT MCL elongation Proposed MCL elongation threshold for Flex-GT : 23 mm (taking into account 10% increase in knee stiffness due to muscle tone)
TEG-077	JAMA	Flex-GT	 Review of proposed tibia bending moment threshold Results Average value of proposed tibia bending moment threshold is 318 Nm

Doc. #	Affiliation	Version	Summary
TEG-078	BASt	Flex-GT	 -Correlation study between Flex-PLI and TRL-LFI showed no comparible assessment of ACL/PCL protection Results 12.7 mm ACL/PCL elongation limit for monitoring purpose only proposed based on one paper presenting 2 human data First estimation of MCL elongation limit : 18-20 mm, muscle tone already taken into account
TEG-084	JAMA	Flex-GTR	 Injury probability function for human tibia fracture Data scaling options Results Different data scaling options resulted in the range of bending moment of 312 – 397 Nm for 50% fracture probability
TEG-095	JAMA	Flex-GTR	 -Proposal for bending angle threshold (50% probability) of human MCL failure Results For injury timing definition options from lvarsson et al., the use of Definition B (time of maximum moment) is recommended based on the injury distribution in the experiment (1/8 complete MCL failure, 6/8 partial MCL failure, 1/8 no injury) Proposed human knee bending angle threshold: 19 deg

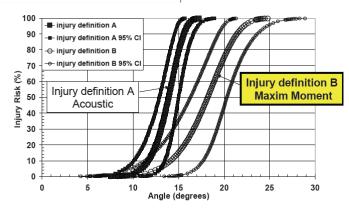

Doc. #	Affiliation	Version	Summary
			 Proposal for Flex-GTR injury thresholds based on human thresholds for 50% injury probability and human vs Flex-GTR correlation analysis
			Results
TEG-097	JAMA	Flex-GTR	 Estimated human threshold for 50% injury probability: Tibia bending moment = 361 Nm, MCL elongation = 15.9 mm
			- Human – Flex-GTR correlation function developed using the Flex-GTR FE model incorporating an extended rubber flesh
			- Converted Flex-GTR thresholds for 50% injury probability: Tibia bending moment = 380 Nm, MCL elongation = 21 mm
			- Human tibia fracture probability function using scaled data
			 Conversion to Flex-GTR threshold (50% risk) using human vs Flex-GT correlation analysis and Flex-GT vs Flex-GTR correlation
			Results
TEG-098	BASt	Flex-GTR	- 6 data from Nyquist et al. scaled to German anthropometric data, 10% increase of peak moment due to filtering, and cumulative normal distribution method, resulted in 265 Nm for 50% probability of tibia fracture
			- Converted Flex-GTR tibia bending moment threshold: 260 – 301 Nm

Doc. #	Affiliation	Version	Summary
TEG-127	Flex-TEG	Flex-GTR	-Generic trace of Flex-TEG injury criteria discussion Results - Different studies resulted in different threshold proposals - As a result of Flex-TEG discussion, a consensus was reached as to the threshold values for the Flex-GTR: Tibia bending moment = 340 Nm, MCL elongation = 22 mm - Seek for a guidance from GRSP as to the injury thresholds for ACL/PCL
TEG-128	ACEA	Flex-GTR	 Example car test results (time histories of all injury measures) Results In one example test, maximum PCL elongation occurred in the rebound phase Proposal to ignore injury measures during and after the rebound phase
TEG-129	ACEA	Flex-GTR	 -Review of literature on ACL/PCL injury threshold Results Bhalla et al.: Two tests, a likely ACL failure at 17.8mm and 12.7mm shear displacement, NOT ACL elongation Kajzer et al.: One ACL avulsion at 23mm shear displacement Teresinski et al.: ACL failure occurred after MCL rupture Criteria without a sufficient data base is not advisable

Doc. #	Affiliation	Version	Summary
TEG-130	BASt	Flex-GTR	 Car test (1 one-box, 2 sedans, 1 SUV) and dynamic certification test Correlation analysis between TRL-LFI and Flex-PLI Geometric analysis of correlation between Flex-PLI shear displacement and ACL elongation Proposal for ACL/PCL injury thresholds Results Conversion from Shear Displacement: 8 mm ACL elongation Conversion from MCL elongation: 10 mm ACL elongation Proposal: ACL = 13 mm (mandatory), PCL = 13 mm (monitoring)

man value						
Body regions	50% injury risl (tent	k level of AN tative)	M50	References		
, ,	Huma	an value				
Leg (Tibia)	BM (312	- 350 Nm)		BM (312 Nm): Kerrigan et al., 2004 BM (350 Nm): INF GR/PS/82		
Knee (MCL)	BA (18	- 20 deg)		g).: Ivarsson et al., 200 deg).: INF GR/PS/82	4	
BM: Bending moment,	f american male BA: Bending angle, EL:	Elongation, SI	D: Shearing displacement.			
BM: Bending moment,	BA: Bending angle, EL:			`		
nvert: Human	BA: Bending angle, EL: Value >>> Fle:	x-GT val	Flex-GT Model	Flex-GT	=	
nvert: Human Human Tibia bending mo	BA: Bending angle, EL: value >>> Fle: Magnetic States Human I oment Tibia bending	x-GT val	Flex-GT Model Tibia bending moment	Tibia bending momer	n <mark>t.</mark>	
nvert: Human Human Tibia bending mo _{Нтвм}	BA: Bending angle, EL: value >>> Fle: Human Moment Tibia bending HM _T	X-GT val	Flex-GT Model Tibia bending moment FGTM _{TBM}	Tibia bending momer FGT _{твм}	ut.	Tantativa
nvert: Human Human Tibia bending mo	BA: Bending angle, EL: value >>> Fle: Magnetic States Human I oment Tibia bending	X-GT val	Flex-GT Model Tibia bending moment	Tibia bending momer	<u>nt</u> 	Tentative
<mark>nvert: Human</mark> Human Tibia bending mo _{Нтвм} (Nm)	BA: Bending angle, EL: value >>> Fle: Human I oment Tibia bending (Nm	X-GT val	Flex-GT Model Tibia bending moment FGTM _{TEM} (Nm)	Tibia bending momer FGT _{TBM} (Nm)	<u>nt</u>	Tentative threshold values
nvert: Human Human Tibia bending mo H _{твм} (Nm) 312 350 assumption: н _{твм} = H	BA: Bending angle, EL: value >>> Fle: Human Moment Tibia bending HMm (Nm 312	X-GT val	Flex-GT Model Tibia bending moment FGTM _{TEM} (Nm) 299	Tibia bending momer FGT _{TBM} (Nm) 299		
nvert: Human Human Tibia bending mo H _{твм} (Nm) 312 350 assumption: H _{твм} = H FGT _{мтвм} = 0.9977 * H	BA: Bending angle, EL: Value >>> Fle: Human I oment Tibia bending HM _{TR} (Nm 312 350 M _{TEM} , FGT _{MTEM} = FGT _{TB} IM _{TEM} - 12.325 (from regu	X-GT val	Iue Flex-GT Model Tibia bending moment FGTM _{TBM} (Nm) 299 337 Human Model	Tibia bending momer FGT _{TBM} (Nm) 299 337 S Flex-GT model	_ ← ∧	threshold values
nvert: Human Human Tibia bending mo H _{твм} (Nm) 312 350 assumption: H _{твм} = H FGT _{MTBM} = 0.9977 * H Human Knee bending a	BA: Bending angle, EL: Value >>> Fle: Human I oment Tibia bending HM _{TBM} FGT _{MTBM} = FGT _{TB} M _{TBM} . FGT _{MTBM} = FGT _{TB} M _{TBM} - 12.325 (from regu Human I ngle Knee bendi	X-GT val	Iue Flex-GT Model Tibia bending moment FGTM _{TBM} (Nm) 299 337 Human Model Knee MCL elongation	Tibia bending momer FGT _{TBM} (Nm) 299 337 S Flex-GT model Knee MCL elongation	_ ← ∧	threshold values
nvert: Human Human Tibia bending mo H _{твм} (Nm) 312 350 assumption: H _{твм} = H FGT _{мтвм} = 0.9977 * H Human Knee bending a H _{KBA}	BA: Bending angle, EL: value >>> Fle: Human Moment Tibia bending HMT (Nm 312 350 MTEM. FGT_MTEM = FGT_TB MTEM. FGT_MTEM = FGT_TB MTEM. FGT_MTEM = FGT_TB HMTEM - 12.325 (from regular)	X-GT val	Iue Flex-GT Model Tibia bending moment FGTM _{TEM} (Nm) 299 337 United States of the second sec	Tibia bending momer FGT _{TBM} (Nm) 299 337 Flex-GT model Knee MCL elongation FGTM _{MCL}	_ ← ∧	threshold values
nvert: Human Human Tibia bending mo H _{твм} (Nm) 312 350 assumption: H _{твм} = H FGT _{MTBM} = 0.9977 * H Human Knee bending a	BA: Bending angle, EL: Value >>> Fle: Human I oment Tibia bending HM _{TBM} FGT _{MTBM} = FGT _{TB} M _{TBM} . FGT _{MTBM} = FGT _{TB} M _{TBM} - 12.325 (from regu Human I ngle Knee bendi	X-GT val	Iue Flex-GT Model Tibia bending moment FGTM _{TBM} (Nm) 299 337 Human Model Knee MCL elongation	Tibia bending momer FGT _{TBM} (Nm) 299 337 S Flex-GT model Knee MCL elongation	_ ← ∧	threshold values

References (referred contents)



• Kerrigan, J.R., Drinkwater, D.C., Kam, C.Y., Murphy, D.B., Ivarsson, B.J., Crandall, J.R., Patrie, J. (2 Tolerance of the Human Leg and Thigh in Dynamic Latero-Medial Bending, ICRASH 2004.

References (referred contents)

Human value

Injury Risk Curve for Knee (Bending)

 Ivarsson, B.J., Lessley, D., Kerrigan, J.R., Bhalla, K.S., Bose, D., Crandall, J.R., Kent, R. (2004) Dy Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, Proc. International Conference on the Biomechanics of Impacts, pp. 179-191.

References (referred contents)

Human value

Injury Risk Curve for Mid-Leg

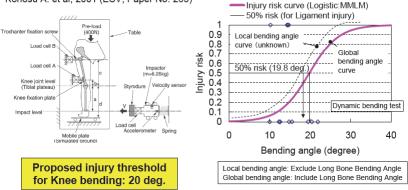
Tibia Bending Strength and Response Nyquist G. W. et al, 1985 (SAE, Paper No. 851728)

Tibia Bending: Strength and Response Nyquist G. W. et al. 1985 (SAE 851728)

Teethle	CadaverNo.	Sex	Age	Stature	Body Mass	Impact Speed	Direction of	Peak Bending	Moment	
Testino.	Gadaverno.	Sex	(years)	(m)	(kg)	(m/s)	Loading	at Midspan	(Nm) *	
118	458	М	54	1.82	68	3.5	LM	395		
124	406	М	64	1.77	82	4.2	LM	287		
126	375	М	58	1.74	73	4.2	LM	224		
127	404	М	56	1.76	79	3.7	LM	237		
129	395	М	57	1.78	99	3.7	LM	349		
132	525	М	57	1.87	45	3.8	LM	264		
147	400	M	57	1.78	84	2.9	LM	431		

* The peak values were attenuated by 10 % by filtering (CFC 60) procedure.

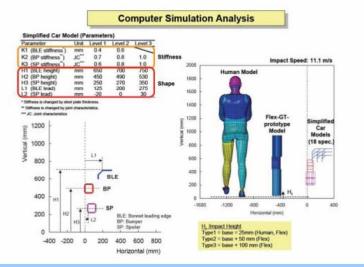
Proposed injury threshold for tibia bending: 350 Nm


 ECE/TRANS/WP.29/GRSP/INF GR PS (2004) Discussion on Injury Threshold for Pedestrian Legform Test, INF/GR/PS/82, P. 2.
 5

References (referred contents)

Human value

Injury Risk Curve for Knee (Bending)


RECONSIDERATION OF INJURY CRITERIA FOR PEDESTRIAN SUBSYSTEM LEGFORM TEST - PROBLEMS OF RIGID LEGFORM IMPACTOR -Konosu A. et al, 2001 (ESV, Paper No. 263)

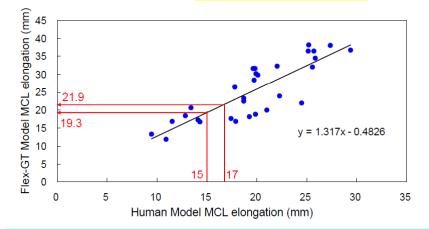
 ECE/TRANS/WP.29/GRSP/INF GR PS (2004) Discussion on Injury Threshold for Pedestrian Legform Test, INF/GR/PS/82, P. 2.

TEG-076 Estimation of MCL Failure Threshold

Current Proposal

Parameter study was carried out using simplified car models.

Effect of Muscle Tone

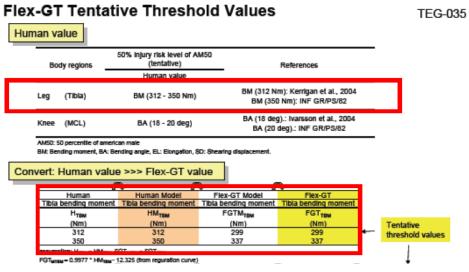

- Lloyd and Buchanan (1996) Muscles are activated to support about 15% of static varusvalgus loads. Muscular contribution increased with increasing magnitude of VV moments
- •Lloyd and Buchanan (2001) For volunteers, average contribution to varus is $17 \pm 9.7\%$ and to valgus is $10 \pm 6.3\%$ of externally applied moment

David G. Lloyd, Thomas S. Buchanan Strategies of muscular support of varus and valgus isometric loads at the human knee J. of Biomechanics 34 (2001) 1257-1267

The effect of muscle tone has been addressed in Lloyd and Buchanan (1996, 2001) from the Journal of Biomechanics

Flex vs. Human model (INCLUDING high-bumper vehicles)

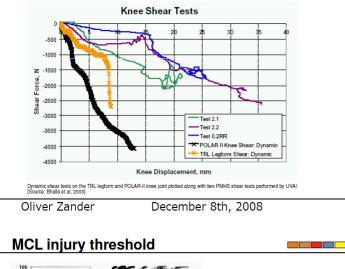
Flex-GT MCL elongation thresholds will be 19-22 mm when the correlation obtained using the FE simulation results with simplified vehicle models INCLUDING those representing high-bumper vehicles is used

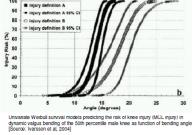

Effect of Muscle Tone

- Flex-GT MCL elongation thresholds : 19.3-21.9 mm based on the correlation obtained using the FE simulation results with simplified vehicle models INCLUDING those representing highbumper vehicles
- Effect of muscle tone : 10% in valgus bending
- Flex-GT MCL elongation thresholds taking into account the effect of muscle tone : 21.2-24.1 mm (average : 22.7 mm)

Proposed Flex-PLI MCL elongation threshold : 23 mm

Based on the SAE paper by Nyquist et al. and the ICRASH paper by Kerrigan et al., the threshold values ware set at 299 and 337Nm.


New Proposal


Injury threshold for Flex-PLI Tibia bending moment (JAMA proposal): **318Nm**

Average value of the two threshold values shown in this presentation

ACL/PCL injury thresholds

Therefore, it appears more appropriate to stick with PMHS knee shearing results evaluated by Bhalla et al (2003) that state a tolerance of at least 12.7 mm for knee shear displacement of the 50th male, even though the timing of injury could not be clearly identified:

Questions:

 Why injury definition B (injury occurence at the time of maximum moment) and not definition A (injury occurrence at time of first peak)?

Proposal for

higher performance limit:

18° knee bending angle

 Why no use of the dynamic response corridor (16-20° / 12,5°-15°) but just the average value?

Slide No. 6

195

```
ACL/PCL injury thresholds
```


Conclusions / Proposal:

1. Under the previously made observations, the following, first estimation could be done:

Flex-GT ACL/PCL elongation upper performance limit: 12,7 mm

2. In a next step, a more detailed correlation study between shearing displacement and cruciate ligament elongation could be done, using an appropriate amount of simulations on simplified test rigs and / or real car Tests, representing the current vehicle fleets.

Anyway, as the cruciate (ACL) ligament injuries are expected to occur in conjunction with other (MCL) injuries, the common injury mechanisms have to be better understood.

Therefore, and for the comparatively low relevance within real pedestrian accidents, for the time being, a threshold of 12,7 mm ACL/PCL elongation could be proposed as performance limit for monitoring purposes only.

Oliver Zander	December 8th, 2008	Slide No. 8

MCL injury threshold

Conclusions / Proposal:

- 1. As starting point, the dynamic bending limit response corridor according to injury definition B [approx 16... 20°] and the inkury risk curve by Konosu (2001) [19,8°] for a 50% injury risk might be appropriate
- 2. Those bending limits could be used (as before) as human model knee bending angle and then be transformed accordingly into:
 - ➔ human model knee MCL elongation
 - → Flex-GT model knee MCL elongation (= Flex-GT knee MCL EL)
- 3. Under the previously made observation (Human knee bending angle [deg] ~ Flex-GT MCL elongation [mm]) the following ,first estimation could be done:

Flex-GT MCL elongation lower performance limit: 20 mm Flex-GT MCL elongation upper performance limit: 16 mm

4. Note:

Effect of muscle tone has already been taken into account High bumper vehicles still have to be taken into account in an appropriate, weighted manner

December 8th, 2008

1 2 2

Slide No. 17

2. Scaling Factor used in Kerrigan et al. (2004)

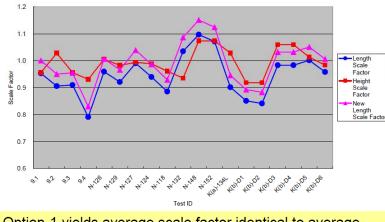
Data Scaling Procedure used by Kerrigan et al.

Data Scaling

Equation 1 shows that the stress arising in a bone (modeled as a linearly elastic beam) is proportional to the moment applied and the cross sectional geometry of the bone. To provide a basis for comparing specimen responses, it is common to assume that specimens are geometrically similar and thus can be scaled to a reference geometry. Thus the bones in this study are scaled to a reference geometry using a scale factor ($\lambda_L = L_{ref} L$) based on the length of the bone specimen.

from Kerrigan et al. (2004)

Assume geometric similarity between the leg specimens
Tibia bending moment was scaled using the following equations


$$\begin{split} \lambda_{L} &= L_{ref} \ / \ L \\ M_{scaled} &= \lambda_{L}^{-3} M \end{split}$$

where

L_{ref} : Reference tibia length M : Measured tibia bending moment L : Tibia length of specimen M_{scaled} : Scaled tibia bending moment

2. Scaling Factor used in Kerrigan et al. (2004)

Scale Factors for Option-1 Length Scale Factor Comparison

Option-1 yields average scale factor identical to average height scale factor while allowing individual variation

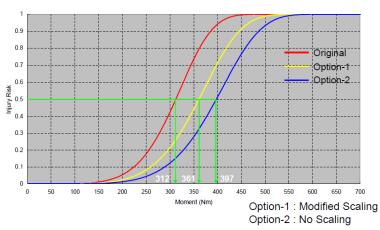
2. Scaling Factor used in Kerrigan et al. (2004)

Options for More Reasonable Length Scale Factor

Option 1

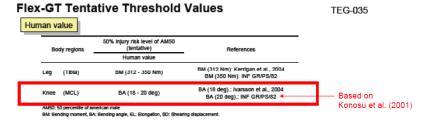
- Determine reference length such that the average length scale factor coincides with the average height scale factor
 - Assumption: overall tibia length distribution should correlate well with overall height distribution
 - Assume the same ratio of tibial plateau height to tibia length as that used by Kerrigan et al. (1.22)
 - Reference tibia length (for scaling Kerrigan data) : 397.4 cm
 - Reference tibial plateau height (for scaling Nyquist data) : 483.5 cm

Option 2


Use unscaled data

 Average height of the specimens (176.6 cm) is close to 50th percentile

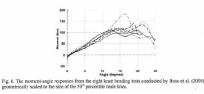
Reanalyze injury risk curves using the same statistical procedures as those used by Kerrigan et al. under these two options


2. Scaling Factor used in Kerrigan et al. (2004)

Injury Risk Curves for Original, Option-1 and Option-2 Datasets

Risk Curves for Different Options

Original Proposal (TEG-035)

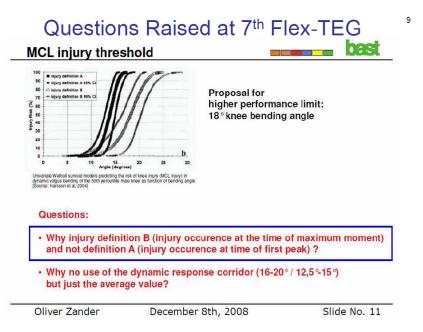


Originally proposed threshold for human MCL (TEG-035)

- 18 deg based on Ivarsson et al. (2004)20 deg based on Konosu et al. (2001)
- No single value proposal

Questions Raised at 7th Flex-TEG

Scaled moment-angle curves in Ivarsson et al.


Injuries sustained by each specimen

11

Test #	Specimen #	Aspect	Test	ACL	PCL	MCL	LCI
Bend 1	51000944-004	Right	4 pt	v	v	Ρ	٧
Bend 2	2002-FRM-159	Right	4 pt	v	v	P	v
Bend 3	2001-FRM-141	Left	4 pt	v	V	P	v
Bend 4	2002-FRM-179	Right	4 pt	v	v	Ρ	٧
Bend 5	2002-FRM-179	Left	4 pt	v	v	С	٧
Bend 6	2001-FRM-141	Right	4 pt	v	v	P	٧
Bend 7	2003-FRM-187	Left	4 pt	V	v	v	٧
Bend 8	2001-FRM-152	Left	4 pt	v	v	P	v
Comb 1	2002 EDM 170	Diabt	2 nt	w	v	u.	- 11
Comb 8	2001-FRM-152	Right	3 pt	V	v	P	V

 Time of first local moment peak is not always different from time of maximum moment : No consistency

- Acoustic emission burst would work with bone fractures, but not with ligament failure : May have detected vibration from other phenomenon than MCL failure
- Most of the specimens sustained only partial failure of MCL : Use of first peak is likely to introduce minor failure of other knee components
- For above reasons, use of Definition B (Maximum moment) is recommended

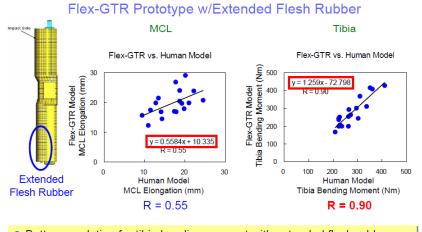
Proposal for Human MCL Threshold

- No data duplication between Konosu et al. (2001) and Ivarsson et al. (2004) : simple average can be justified to take into account as many data as possible
- Data scaling does not affect injury risk functions for the MCL (bending angle) in both Konosu et al. and Ivarsson et al.
- Use of Injury Definition B in Ivarsson et al. is more appropriate to reasonably represent failure of the MCL
- 95% CI curves in Ivarsson et al. should not be used because the estimated risk function provide the best fit to the data
- Proposed bending angle threshold for human MCL : 19 deg (virtually the same as previously proposed value)
- Flex-GTR MCL elongation threshold needs to be investigated based on the response correlation between the Flex-GTR and human lower limb

Proposed Human Thresholds

Proposal for Human MCL Threshold • No data duplication between Konosu et al. (2001) and Ivarsson et al. (2004) : simple average can be justified to take into account as many data as possible • Data scaling does not affect innyr insk functions for the MCL (bending angle) in both Konosu et al. and Ivarsson et al. • Use of Injury Definition Ein Ivarsson et al. • Use of the reasonably represent failure of the MCL • 95% CI curves in Ivarsson et al. should not be used because the estimated risk function provide the best fit to the data

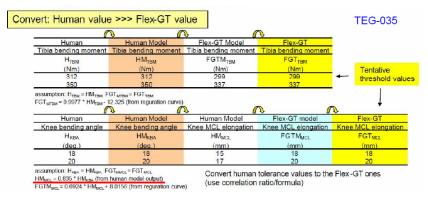
Proposed bending angle threshold for human MCL : 19
 deg (virtually the same as previously proposed value)
 Flex-GTR MCL elongation threshold needs to be
 investigated based on the response correlation
 between the Flex-GTR and human lower limb


Proposal for Human Tibia Moment Threshold • Only data used by Kerrigan et al. (2004) were used in order to avoid dupicated data entry. • Unscaled data resulted in different injury risk curve from that obtained using modified scale factors with the average scale factor identical to the average height scale factor • Although the average height scale factor • Data of 50° percentile male, data scaling should allow more appropriate threshold for the Face-FLI that represents 50° percentile male anthropometry • Proposed bending moment threshold for human tibia :

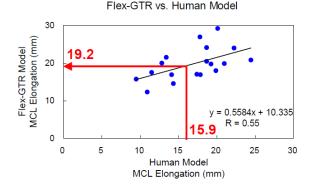
361 Nm • Flex-GTR tibia bending moment threshold needs to be investigated based on the response correlation between the Flex-GTR and human lower limb Proposed Thresholdfor Human Tibia Tibia Bending Moment 361 Nm

Proposed Thresholdfor Human MCL

Knee Bending Angle 19 deg


Human - Flex-GTR Response Correlation

Better correlation for tibia bending moment with extended flesh rubber
Use results for extended flesh rubber to convert injury thresholds from

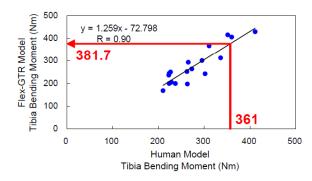

human to Flex-GTR

MCL Injury Measure Conversion

Tibia Bending Moment for Human Model : 361 Nm
MCL Elongation for Human Model : 0.835*19 deg = 15.9 mm

MCL Threshold Conversion

Converted Flex-GTR MCL Elongation : 19.2 mm


50

3

10

Tibia Threshold Conversion

Flex-GTR vs. Human Model

Converted Flex-GTR Tibia Bending Moment : 381.7 Nm

Effect of Muscle Tone atr9 Preamble

(TEG-076)

110. These studies suggest a bending limit in the range of 15° to 21° for knee protection. The informal group determined that a value close to the upper limit (21°) of this range should be considered, and not the average. The absence of muscle tone in the PMHS tests reduced the knee stiffness of the subjects, and the high rigidity of the impactor bones transferred to the knee joint a part of the impact energy normally absorbed by the deformation of human long bones. For these reasons, a bending limit of 19° was selected for this gtr.

Lloyd and Buchanan (2001)

David G. Lloyd, Thomas S. Buchanan Strategies of muscular support of varus and valgus isometric loads at the human knee J. of Biomechanics 34 (2001) 1257-1267

For volunteers, average contribution to varus is 17 ± 9.7% and to valgus is 10 ± 6.3% of externally applied moment
 Flex-GTR MCL threshold incorporating effect of muscle tone : 19.2 mm * 1.1 = 21.1 mm

13

Proposal for Flex-GTR Injury Threshold

- Correlation functions derived from data NOT INCLUDING high bumper vehicles were used for threshold conversion
- Correlation functions with an extended flesh rubber were used for significantly improved correlation for the tibia bending moment
- Converted thresholds were 19.2 mm for MCL, and 381.7 Nm for Tibia
- Incorporation of muscle tone effect yielded the MCL elongation threshold of 21.1 mm

Proposed elongation threshold for Flex-GTR MCL : 21 mm

Proposed bending moment threshold for Flex-GTR tibia : 380 Nm

PMHS Data	P	MHS	Data
-----------	---	-----	------

bast

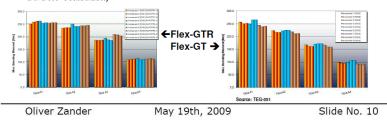
Test	Source	Gender	Age	Stature (cm)	Body Mass (kg)	Impact Speed (m/s)	Loading Direction	Peak BM at Midspan (CFC 60) [Nm]	at Midspan	Anatomical Measurement (Heel to Tibial Plateau) L [mm]	Standardized tibia height (DIN 33402-2) L _{ref} [mm]	Scaled Fracture Moment M _{scaled} [Nm]
	Nyquist											
118	et. al.	м	54	182	68	3,5	LM*	395	434,5	520	455	291,1
124	Nyquist et. al.	м	64	177	82	4,2	LM*	287	315.7	490	450	244,5
	Nyquist		04		02	412	c.m	207	515,7	450	450	244,5
126	et. al.	м	58	174	73	4,2	LM*	224	246,4	480	455	209,9
127	Nyquist et. al.	м	56	176	79	3,7	LM*	237	260,7	465	455	244,2
129	Nyquist et. al.	м	57	178	99	3,7	LM*	349	383,9	500	455	289,3
	Nyquist					-,.			,.			20070
132	et. al.	м	57	187	45	3,8	LM*	264	290,4	445	455	310,4

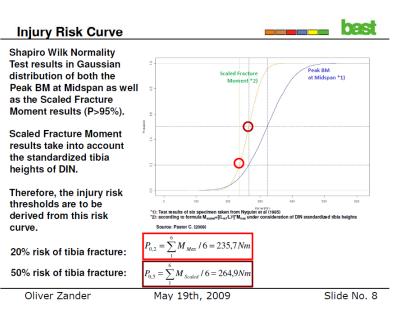
- Consideration of six male tibia specimen tested by Nyquist et al. (1985) with known heel to tibia plateau heights
- Acquisition of Bending Moment to fracture at Midspan
- Due to attenuation of peak values by CFC 60 filtering: increase of bending moment values by 10% (→ M_{max})
- Calculation of scaled Fracture Bending Moments according to the formula: $M_{scaled}{=}[(L_{ref}/L)^3]^{\ast}M_{max}$

Oliver Zander May 19th, 2009	
------------------------------	--

Calculation of Maximum Tibia BM

Slide No. 6


Flex-GT Tibia Bending Moment = [...] = 0,9977 * Human Tibia Bending Moment - 12,325


assumption: H_{TBM} = HM_{TBM}. FGT_{MTBM} = FGT_{TBM} FGT_{MTBM} = 0.9977 * HM_{TBM} - 12.325 (from reguration curve) Source: TEGA48

Flex-GT BM_{Tibia} = 0,9977 * 264,9 - 12,325 = 252 Nm

Increase of Flex-GTR BM_{Tibia} values compared to Flex-GT BM_{Tibia} : A1: +1,83%, A2: +10,18%, A3: +17,04%, A4: +14,58%

➔ Mean increase of Flex-GTR BM_{Tibia} compared to Flex-GT BM_{Tibia} in idealised tests: 11% (Flex-GT and Flex-GTR readings within ACEA/BASt joint projects on Flex-GT/GTR evaluation)

Calculation of Maximum Tibia BM

bast

- Flex-GTR Tibia Bending Moment =
- 1,11 * (0,9977 * Human Tibia Bending Moment 12,325)

Flex-GTR BM_{Tibia} = 1,11 * (0,9977 * 264,9 – 12,325) = 279,7 Nm

	Test #	Tibia A1	Tibia A2	Tibia A3	Tibia A
Maximum deviation of	Inverse test 1 [SN01]	251,4	234,3	186,2	108,9
	Inverse test 2 [SN01]	257,9	236,6	184,9	111,8
tibia value from mean	Inverse test 3 [SN01]	262,0	236,1	186,8	112,7
value within inverse tests:	Inverse test 4 [SN02]	262,7	251,3	194,9	114,5
7.66 %	Inverse test 5 [SN02]	254,0	241,2	188,4	108,9
	Inverse test 6 [SN02]	256,1	240,9	185,1	110,5
(measured at Tibia A3)	Inverse test 7 [SN03]	254,2	243,2	209,0	111,5
	Inverse test 8 [SN03]	255,8	243,7	207,9	113,6
Nine inverse tests with Flex-	Inverse test 9 [SN03]	255,6	245,8	204,0	112,6
	MV	256,63	241,46	194,13	111,67
GTR, three with SN01, SN02,	CV	1,44	2,21	5,23	1,75
SN03 each, at 40 km/h	Max	262,70	251,30	209,00	114,50
	Min	251,40	234,30	184,90	108,90
	max. Dev. from MV [%]	2.36	4,08	7,66	2,54

Upper Performance Limit (UPL) = Flex-GTR BM_{Tibia} / 1,0766 = 259,8 Nm Lower Performance Limit (LPL) = Flex-GTR BM_{Tibia} * 1,0766 = 301,1 Nm

As type approval requires pass-/fail threshold:

Proposed Threshold	Value for Flex-GTR Max. Tibia B	ending Moment: 302 Nm
Oliver Zander	May 19th, 2009	Slide No. 11

TEG-127

7 December 2009

Technical Background Information Document for the UN-ECE GRSP explaining the Derivation of Threshold Values and Impactor Certification methods for the FlexPLI version GTR agreed by the FlexPLI-TEG at their 9th Meeting

Drafted by: Atsuhiro Konosu (JARI/J-MUT) and Oliver Zander (BASt) on behalf of the GRSP FlexPU Technical Evaluation Group (TEG)

1) Tibia Threshold Value: 340 Nm

At the 8th GRSP Flex-TEG meeting on May 19th, 2009, two proposals for the tibia threshold value of the FlexPLI version GTR (also called Flex-GTR) were made by JAMA and BASt, coming to different conclusions.

a) 380 Nm (JAMA)

JAMA derived the Flex-GTR tibia bending moment threshold using a linear transition equation between human and Flex-GTR Finite Element (FE) models derived from computer simulation results. The average human tibia bending moment threshold value was taken from an injury risk curve of the 50th percentile male for tibia fracture, taking into account scaled male and female PMHS data from Nyquist et al. (1985) and Kerrigan et al. (2004) under modification of the standard tibia length and standard tibia plateau height, making the assumption that the height scale factor and length scale factor should correlate to each other. The Weibull Survival Model was used to develop the injury probability function. The proposed final threshold value resulted in 380 Nm.

b) 302 Nm (BASt)

BASt derived the Flex-GTR tibia bending moment threshold also using the corresponding transition equation between human and Flex-GTR FE models. The average human tibia bending moment threshold value was taken from an injury risk curve of the 50th percentile male for tibia fracture, taking into account scaled male PMHS data from Nyquist et al. (1985) using the standard tibia plateau height provided by DIN 33402-2 German anthropometrical database. The cumulative Gaussian distribution was used to develop the injury probability function. The calculated threshold value under consideration of possible scatter of test results and of a reproducibility corridor derived from inverse certification test results was 302 Nm.

A comparison of both approaches revealed that the calculated threshold values mainly depend on

- the underlying set of PMHS data
- the consideration of female and / or male data
- the use of scaled or unscaled data
- the particular anthropometrical database based on which human data are scaled
- the injury risk to be covered
- the statistical procedure to develop an injury probability function

As consensus for both approaches BASt proposed a rounded average value of 340 Nm for maximum tibia bending moment threshold.

In parallel to BASt proposing a rounded average value, JAMA conducted a correlation study on the EEVC WG 17 PLI tibia acceleration and FlexPLI tibia bending moment. As a result, they found that the 170 g EEVC WG 17 PLI tibia acceleration in gtr 9 was correlated to 343 Nm Flex-GTR tibia bending moment TEG-127

7 December 2009

As this was almost the value proposed by BASt as average value between the BASt and former JAMA proposals, the group agreed at the 9th TEG meeting on September 3rd – 4th, 2009, on a consensus of the rounded value of 340 Nm.

- 2) MCL Elongation Threshold Value: 22 mm
- a) 22 mm (JAMA)

JAMA developed an MCL injury risk function as average function between the risk functions from Ivarsson et al. (2004) and Konosu et al. (2001), latter one revised using the Weibull Survival Model. In this function, a 50% risk of knee injury in terms of MCL rupture corresponded to a human knee bending angle of 19 degrees. This value was converted to 19.1 mm MCL elongation, using a corresponding transition equation from computer simulation. After incorporating the effect of muscle tone the threshold value was calculated at 21 mm. As this value was converted to 16.9 degrees of EEVC WG 17 PLI knee bending angle by using a corresponding transition equation which would be by 11 % more conservative than the currently defined GTR threshold value of 19 deg, a 5% more conservative approach, equal to 18 deg EEVC WG 17 PLI knee bending angle was proposed and transformed to 22 mm MCL elongation, using the same transition equation as before.

b) 22 mm (BASt)

As BASt is not in the position to validate or double-check those results, they investigated a direct correlation between the EEVC WG 17 PLI knee bending angle and the FlexPLI MCL elongation as verification of the JAMA results. A transition equation was developed, based on hardware test results of different vehicle categories and idealized tests. Thus, a knee bending angle of 19 degrees would correspond to 22.7 mm MCL elongation. In order to provide at least the same level of protection as the current GTR, a threshold value of 22 mm was proposed which was in line with the JAMA proposal

At the 9th GRSP Flex-TEG meeting on September 3rd - 4th, 2009, the group agreed on a Flex-GTR threshold value for MCL elongation of 22 mm.

- 3) ACL/PCL Elongation Threshold Value
- Mandatory with a threshold of 13 mm (BASt)

Currently, no injury risk curve for cruciate ligament injuries is available. BASt proposed to therefore use the results of PMHS tests described by Bhalla et al. (2003), stating that below a shear displacement of 12.7 mm sufficient protection is provided to the cruciate ligaments. Thus, and in the absence of more data but having in mind that the FlexPLI should provide at least the same level of protection as the EEVC WG 17 PLI, BASt proposed a mandatory threshold value of 13 mm for ACL/PCL.

b) Monitoring against a threshold of 13 mm (JAMA)

In contrast, JAMA stated that the percentage of isolated ACL/PCL injuries in real world data is low (less than 3%) and the biomechanical data is limited (only 2 data are available from Bhalla et al. (2003), which does not allow development of an injury probability function. Therefore, the tentative threshold value should be set for monitoring, subject to future modification to the tentative threshold based on additional biomechanical data.

c) No consideration (ACEA)

TEG-127

7 December 2009

As pointed out by both, BASt and JAMA, the biomechanical data available to define an injury risk curve is limited. In addition, it is felt that ACL/PCL elongation usually corresponds to MCL elongation. In addition, the gtr concept does not provide for the monitoring of certain criteria. ACEA therefore proposes to abstain from defining an injury threshold for ACL and PCL.

At the 9th GRSP Flex-TEG meeting on September 3rd - 4th, 2009, the group could not agree an injury threshold for ACL/PCL elongation.

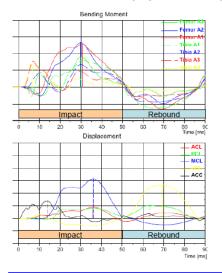
- ➔ GRSP is requested to either come to a conclusion or to provide guidance on this.
- 4) Certification methods

Two different FlexPLI certification methods have been developed in the course of the last years.

a) Pendulum test (JAMA/JARI)

From the beginning, JARI developed the pendulum test as an easily applicable, highly reproducible and repeatable test enabling the test lab to make a quick check up of the impactor's general functionality before each test series. The current manufacturer of the legform, FTSS, modified the pendulum test by hanging the legform upside down and applying an additional mass to the thigh to generate loading levels similar to those of real vehicle tests. JAMA/JARI also showed that essentially no rate sensitive materials are used for the major structures of the Flex-GTR and thus, in their point of view, as a certification test there should be no concern as to the difference in timings between the pendulum test and real vehicle test.

b) Inverse certification test (BASt)


On the other hand, BASt saw the need for a certification test with impactor loadings and test conditions similar to those during real vehicle tests. Therefore, the inverse certification test was developed, providing realistic impact conditions in terms of loadings, kinematics and timings, enabling the test lab to ensure that the impactor works as intended under the impact conditions occurring in real vehicle tests. The proposed test setup is in line with the recommendations of EEVC Working Group 17 who refused for the same reasons as BASt a pendulum test with their impactor for certification purposes.

At the 9th GRSP Flex-TEG meeting on September 3rd - 4th, 2009, the group agreed on a hybrid approach, using the inverse certification tests before each homologation test series and after every 30 tests while the pendulum function test needs to be carried out after every 10 tests in case the certification is not been done by using the inverse certification.

ACEA

TEG-128

Current situation - injury values : impact vs rebound (one example)

 Highest values occur during the impact

Bending moments :

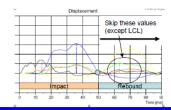
• ACL/PCL :

 Maximal PCL value occurs during the rebound – (slightly) higher value than during the impact

Page 3

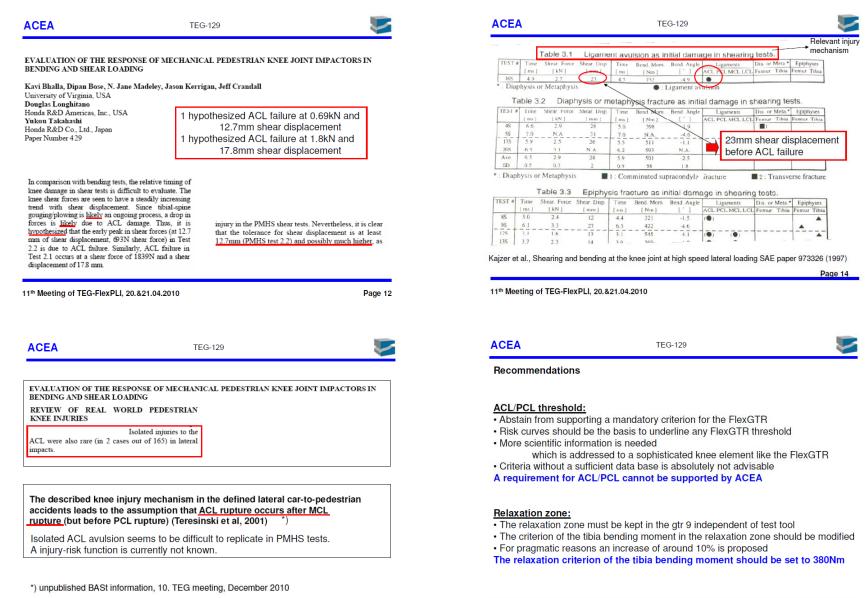
11th Meeting of TEG-FlexPLI, 20. & 21.04.2010

ACEA TEG-128

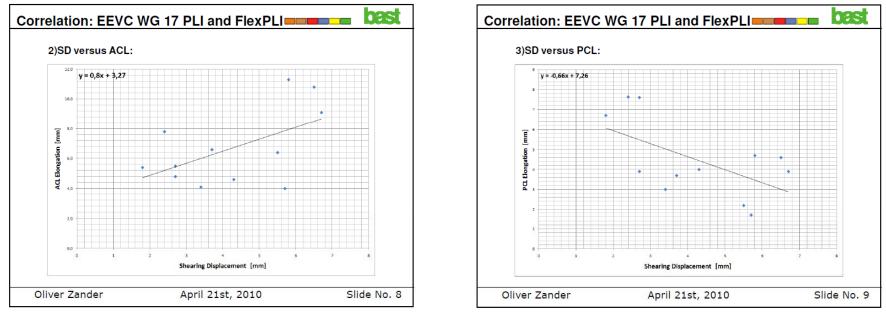

Conclusion & Recommendation

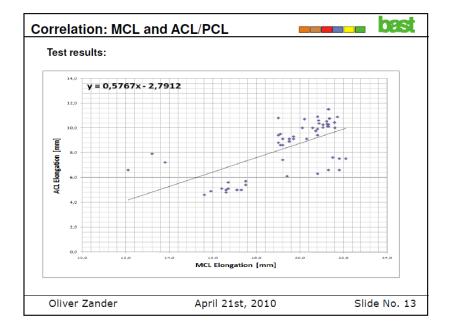
Summary/Conclusion :

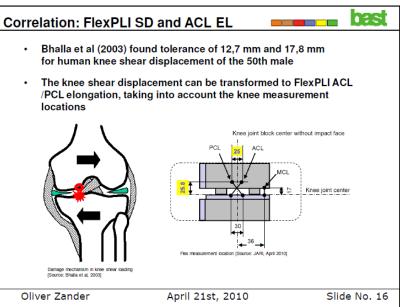
- In the rebound phase of the Flex GTR (vehicle impact), higher ACL/PCL elongation values can occur than during the impact itself
- · Legform Kinematics are biofidelic up until rebound

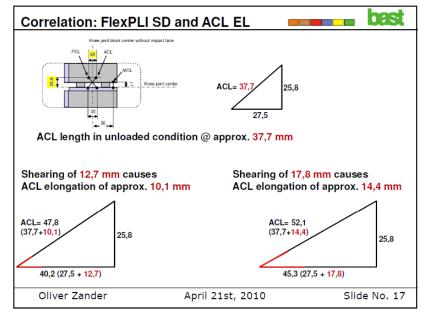

Recommendation :

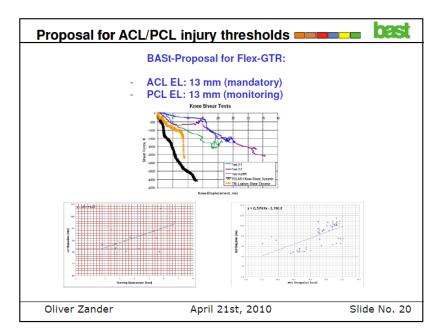
 All maxima occurring during and after the rebound phase shall be ignored. (The rebound phase usually starts around 50 milliseconds but must be determined from film analysis)




11th Meeting of TEG-FlexPLI, 20. & 21.04.2010

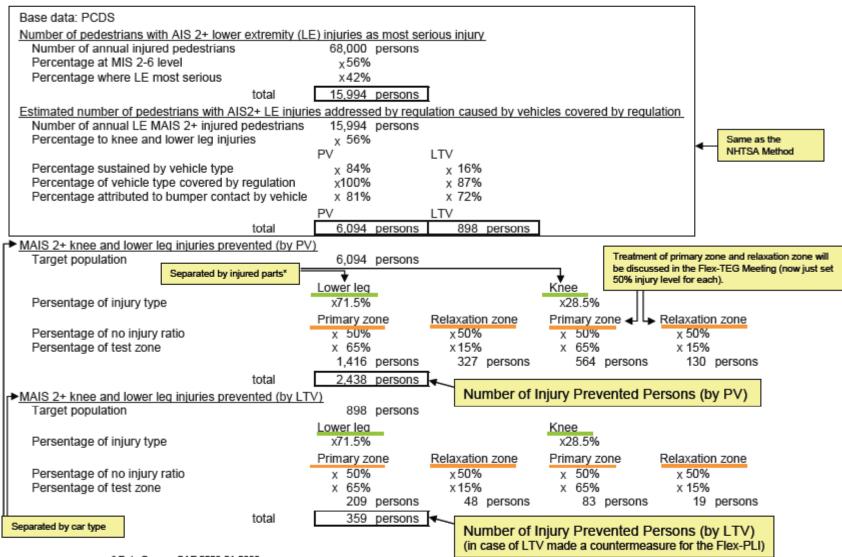

Page 4


Page 8



P	Proposal for ACL/	PCL injury thresholds 🚥	best	
	Conclusions / Propos	sal:		
1.	Under the previously was made:	made observations, the following	g, first estimation	
	•	ation performance limit: 8 mm (SD ation performance limit: 10 mm (N		
2.	information on transi	isk functions for the cruciate liga tion between human and Flex-GT 13 mm ACL/PCL elongation is pro	R ACL/PCL elongation	
3.	. German In-depth accident data gives evidence of clearly defined cruciate ligament ruptures.			
 ACL was proved to be the more critical because under the defined impact conditions less protected ligament. Therefore, the threshold value regarding PCL may be set as monitoring. 				
5.		LI should provide <u>at least the san</u> d to the EEVC WG 17 PLI, the ACI		
	Oliver Zander	April 21st, 2010	Slide No. 19	

Outline


Biofidelity Performance/Injury Criteria Benefit Durability Reproducibility and Repeatability Vehicle Countermeasures

3. Benefit

Doc. #	Affiliation	Version	Summary
TEG-049	JAMA-JARI	Flex-PLI	 Estimation of lower limb protection level provided by Flex-PLI Follow NHTSA methodology (GRSP/2006/7), based on PCDS data Results Estimated number of injury-prevented pedestrians by PV: 2,438 Estimated number of injury-prevented pedestrians by LTV: 359

Evaluation Method for Flex-PLI (for discussion)

Base: NHTSA Method (TRANS/WP.29/GRSP/2006/7)

* Data Source: SAE 2006-01-0683

Outline

Biofidelity Performance/Injury Criteria Benefit Durability

5. Reproducibility and Repeatability 6. Vehicle Countermeasures

4. Durability

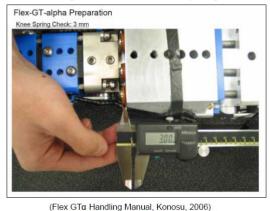
Doc. #	Affiliation	Version	Summary
TEG-037	BGS	Flex-GT	 Dec 2006 - Apr 2007 BASt test programme 70 tests at 40 km/h using Flex-GT Durability check Results Flex-GTα withstood more than 70 tests @ 40 km/h No major mechanical defect Cable defects outside the impactor Minor design and wiring modifications required
TEG-063	NHTSA Flex-GT		 Car test using Flex-GT : 2 cars, 1 location for one car, 2 locations for another car, 2 impactor heights per location 2 additional car tests : same car, same location, same impactor height for repeatability Durability check Results Several minor issues but no catastrophic damage Need to test more aggressive vehicles to evaluate durability for US fleet

4. Durability

Doc. #	Affiliation	Version	Summary
TEG-112	NHTSA	Flex-GTR	 Flex-GTR car test (2005 Honda CR-V, 2002 Mazda Miata, 2006 Infiniti M35, 2006 VW Passat, 2001 Honda Civic) Durability comparison between Flex-GT and Flex-GTR Results Improved durability Poor performers in TRL legform tests have not been tested
TEG-113	KATRI	Flex-GTR	 Flex-GTR car test (1 car) Durability check Results No serious issues on durability

Inspection after test

• Visual inspection of the impactor components and the cabling



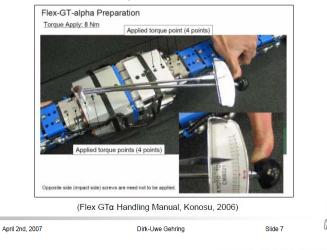
Inspection after test

BGS

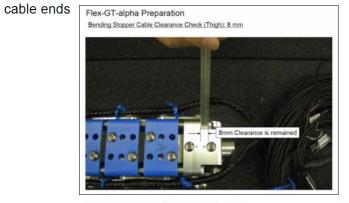
• Check of the length of the 20 knee spring ends

April 2nd, 2007

Dirk-Uwe Gehring



Inspection after test


BGS

• Verification of the torque of 8 screws

Inspection after test

Check of the length of the 4 upper leg bending stopper

Inspection after test

April 2nd, 2007

Check for distortion

Slide 12

BGS

Summary

- Flex GT α withstood more than 70 impact tests at 40 km/h
- No greater mechanical defect
- Cable defects outside the impactor lead to measurement faults and time-intensive repairs
- Improvement of endurance through minor design and wiring modifications required
- Preparations for the test laboratory are comparatively negligible
- Handling effort comparable with EEVC legform
- Significantly more measurement channels than in other pedestrian protection impactor tests
- The necessity of a certification test after every single impact test should be reconsidered

Dirk-Uwe Gehring

(Flex-GT Damage)

Tests Performed

2002 Mazda Miata _{Center}

2005 Honda CR-V

- Each location: 25 mm / 75 mm above ground reference level
- Two additional tests performed on Miata at 75 mm for repeatability

Mechanical (cont.)

- Zippers need to be made more durable
 - Broken pull rings due to repeated high tension when assembling leg
- Slices and cuts were common
 - When does accumulated damage require replacement of flesh?
- Addition of threaded holes in standard location for accelerometer attachment at knee
 - Recommended for impact speed redundancy & comparison to TRL-measured tibia acceleration

Mechanical

Rubber Spacer

Knee Twist

Damaged Casings

Tibia Plate Damage/Rotation

Electrical

- We had 10 12 instances of a broken cable in our testing
- Improvements needed:
 - Better routing scheme
 - Dull sharp edges on knee structure
 - Stronger wire covers
 - Smaller bundle (can redundant gauges be coupled somehow to reduce the number of wires?)
 - Onboard DAS is a very good solution!

Summary

- Test experience and repeatability
 - Improved axial rotation with new roller support
 - Excellent repeatability
- Injury evaluation
 - Flex GT results ranked severity of impacts similarly to TRL testing but indicated higher injury severity
 - At least one Flex GT proposed injury limit exceeded for all three impact locations for 25 mm impact height
 - Effect of raising impact height to 75 mm varied
- Damage and durability
 - Several minor issues but no catastrophic damage
 - Need to test more aggressive vehicles to evaluate durability for US fleet

Test Matrix

Selection Criteria

- Vehicle location did reasonably well in TRL tests (Mallory, ESV 2009 & more recent testing)

Vehicle	Tibia Acceleration (GTR: 170 g)	Bending Angle (GTR: 19 deg)	Shear Displacement (GTR: 6 mm)
2005 Honda CR-V	Pass	Pass	Pass
2002 Mazda Miata	Pass	Pass	Pass
2006 Infiniti M35 (with Nissan Fuga bumper)	Pass	Pass	Pass
2006 Volkswagen Passat	Pass	Fail	Pass
2001 Honda Civic	Fail (marginal)	Fail (marginal)	Fail (marginal)

NHTSA vww.nhtsa.gov

Scuffing but no deformation

Blue segment face detached easily re-attached

No Functional Damage

data loss

Longitudinal lines looked like

material lamination not cracks

Separated cable casing - no

Durability Flex-GT (2008)

Knee Twist

Rubber Spacer

Damaged Casings

Seized Bolt/Sleeve

Face Plate Rotation NHTSA

Durability Comparison Flex-GT vs. Flex-GTR

	Flex-GT (2008)	Flex-GTR (2009)
Knee Twist (Needed Manual Fix)	X	
Bent Tabs	X	
Rubber Spacer Fell Out	Х	
Damaged Cable Casings	X	
Seized Bolt Sleeves	X	
Broken Zipper Ring	X	
Cut/Pulled Instrumentation Cables	X (sensors)	X (SLICE)
Scuffing of Support Piece		X
Blue Cap Came Off	X (easily replaced)	X (easily replaced)
Longitudinal Lamination Lines on Bone?		Not considered damage (?)

Summary

Very good repeatability In two repeat tests, center impact, 5 vehicles Improved durability But we have not tested vehicles that were poor performers in TRL legform tests SLICE is functional & improvement over conventional DAS But does have some bugs that need to be worked out

Introduction of Test Vehicle and Test Method

Test Vehicle

- Vehicle meets the criteria of the TRL-LFI to test according to existing legislation
- Vehicle was rated completely green in the TRL-LFI to tests of Euro-NCAP
- Vehicle is considered to be pedestrian friendly in this area
- Test Method

Impactor type	Flex-PLi-GTR Prototype
Impact velocity	11.1±0.2m/s
Impact zone	EEVC WG17 LFI by EURO NCAP (Green zone)
Impact point	Same point 2 Same vehicles
Impact times	3 Impact per 1 Vehicle
Impact Height	75mm (From ground level)

Conclusion

KATRI have conducted the round robin test for Flex-PLi-GTR and as the result,

- Comparison between EEVC WG17 LFI and Flex-PLi-GTR for same vehicle
- ✓ Vehicle meets the criteria of EEVC WG17 LFI is also to meet Flex-PLi-GTR
- \checkmark In spite of meeting regulation, The margin of Flex–PLi is shorter than EEVC WG17 LFI
- \checkmark This result should not apply for every vehicle, it is only applicable to our tested vehicle

Repeatability

✓ Almost Good(62%) and Acceptable(24%) but some happened not acceptable level(9%)

• Durability and Usability

 \checkmark No serious issues on the durability and usability

• Some improvements are needed

- \checkmark As for Design and Durability : No sharp edges and No fracture especially zipper
- ✓ As for Usability : More convenient and automatic control program
- \checkmark As for stability : Better data download and electrical ground connection
- * More consideration is necessary to unexpected and without-control rebound phenomenon

Outline

Biofidelity
 Performance/Injury Criteria
 Benefit
 Durability

5. Reproducibility and Repeatability

6. Vehicle Countermeasures

Doc. #	Affiliation	Version	Summary
TEG-021	JARI	Flex-GT	 Dynamic certification test (pendulum) Results Comparison of 36 tests for femur and tibia Comparison of 18 tests for MCL, ACL and PCL
TEG-034	J-MLIT /NTSEL	Flex-GT	 Bending test of femur, tibia, knee of Flex-GT Dynamic certification test (Pendulum) using Flex-GT Car test using Flex-GT (two impactors) R&R evaluation Results Flex-GT test results were repeatable in 3-point bending tests and pendulum tests Flex-GT test results were reproducible in car tests No evaluation of Coefficient of Variation
TEG-036	BASt	Flex-GT	 Car test (2 cars) using Flex-G and Flex-GT Dynamic certification test (Pendulum) Repeatability evaluation Results Maximum tibia bending moments: SD between good and acceptable at all impact locations Knee elongation: SD still acceptable in 5/12 cases

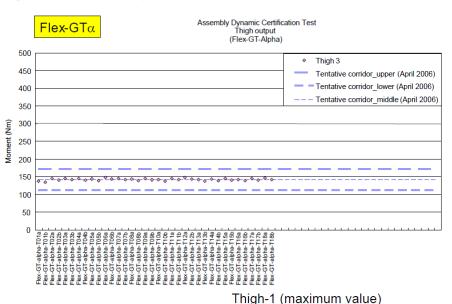
Doc. #	Affiliation	Version	Summary
TEG-038	BGS	Flex-GT	 - 52 dynamic certification tests (Pendulum) - Repeatability evaluation Results - Bending moments are comparatively constant - ACL and PCL show also "constant" histories with a significant scatter - MCL seems to increase with number of tests - No evaluation of Coefficient of Variation
TEG-039	ACEA	Flex-GT	 Car test (one box) : 5 positions, 1 test per position Car test (sport) : 2 positions, 2 tests per position Car test (sport) : 2 positions, 2(3) tests per position Rig test : 5 positions, 3 tests per position Dynamic certification test (Inverse) : 1 position, 5 tests Results Much smaller variation of test results for inverse test compared to vehicle test No evaluation of Coefficient of Variation

Doc. #	Affiliation	Version	Summary
TEG-043	BGS	Flex-GT	 Car tests using Flex-GT : 4 cars Rig test using Flex-GT : 5 impactor heights, 3 tests per height Dynamic certification test using Flex-GT : 5 tests, same configuration Results Test results indicate that repeatability is at least acceptable No evaluation of Coefficient of Variation
TEG-045 Rev.1	J-MLIT	Flex-GT	 Simplified car test (6 tests, same configuration) Repeatability evaluation Results All the CV values from 5 tests for femur, tibia and knee injury measures fell within 3% and were rated 'Good' (less than 5%)
TEG-047	JAMA-JARI	Flex-GT	 Proposal for Flex-GT full calibration test procedure Dynamic certification test : total 31 tests with 3 impactors Results Good repeatability and reproducibility were confirmed for Flex-GT in pendulum dynamic certification test No evaluation of Coefficient of Variation

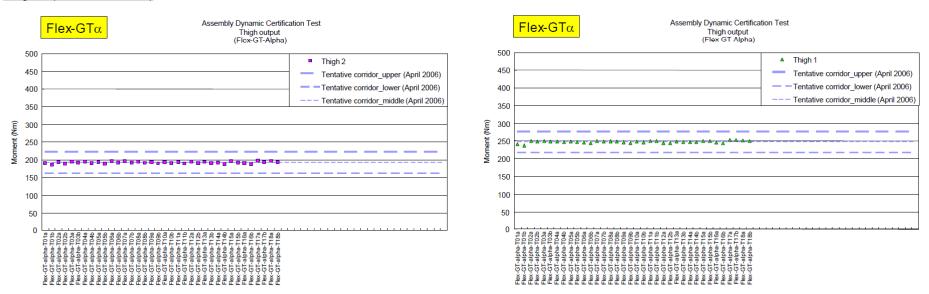
Doc. #	Affiliation	Version	Summary
Doc. # TEG-051 Part 1-3	BASt	Version Flex-GT	 Dynamic certification test (Pendulum) : 3 different Flex-GT, 3 tests per impactor Dynamic certification test (Pendulum) : one Flex-GT, 4 test setups (change in padding and suspension), 3 tests per setup Dynamic certification test (Inverse) : 3 different Flex-GT, 3 tests per impactor Repeatability evaluation using Coefficient of Variation by following the procedure specified in ISO/TC22/SC12/WG5 Doc N751 Results Pendulum test: CV evaluation resulted in 'Good' rating for most of the segments, SN03 with unacceptable repeatability for ACL and PCL, caused by the results of the first test
			 Inverse test: CV evaluation rated 'Good' for a high number of segments, repeatability for ACL and PCL significantly lower and partly unacceptable

Doc. #	Affiliation	Version	Summary
TEG-063	NHTSA	Flex-GT	 Car test using Flex-GT : 2 cars, 1 location for one car, 2 locations for another car, 2 impactor heights per location 2 additional car tests : same car, same location, same impactor height for repeatability Durability check Results Excellent repeatability in 3 tests against one car, with CV lower than 5% for all injury measures
TEG-064	NHTSA	Flex-GT	 21 dynamic certification tests (Pendulum) between car tests using Flex-GT Repeatability evaluation using Coefficient of Variation Results - Certification data was very repeatable - CV: 2.8-7.8% for Femur, 3.2% for ACL, 7.5% for PCL, 1.9% for MCL, 3.1-4.8% for Tibia

Doc. #	Affiliation	Version	Summary
TEG-071	FTSS	Flex-GTR	 - 12 dynamic certification tests (Pendulum) using Flex-GTR - Repeatability evaluation using Coefficient of Variation Results - CV 0.3-4.3% for all injury measures
TEG-072 Rev.1	Japan	Flex-GTR Flex-GT	 Dynamic certification test (Pendulum) : Rig type 2, 3 different Flex-GTR, 3 tests per impactor / Rig type 1, 3 different Flex-GTR and 1 Flex-GT, 1 test per impactor Simplified car test : 3 different Flex-GTR and 1 Flex-GT, 4 tests with one of Flex-GTR, 1 test per impactor for the rest of 3 impactors (2 Flex-GTR and 1 Flex-GT) Repeatability and reproducibility evaluation using Coefficient of Variation Comparison between Flex-GT and Flex-GTR Results Repeatability in pendulum test: Rated 'Good' (CV<3%) for Tibia and MCL of all of the three impactors Repeatability in simplified car test: Rated 'Good' (CV<3%) for all injury measures except Tibia-4 Reproducibility in pendulum test: Rated 'Good' (CV<3%) for all injury measures except Tibia-3 (Acceptable) and PCL (Marginal)

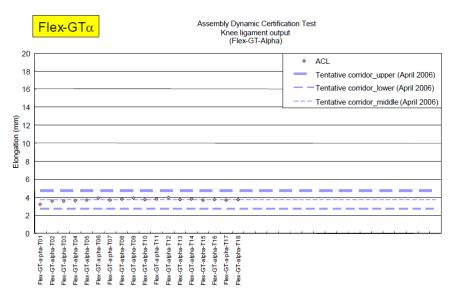

Doc. #	Affiliation	Version	Summary
TEG-087	JAMA-JARI	Flex-GTR	 Flex-GTR dynamic impact test against a simplified car Validation of Flex-GTR R/L symmetric response Evaluation of Flex-GTR repeatability and R/L comparability using Coefficient of Variation Results Repeatability of R/L combined test results: Rated 'Good' (CV<3%) for all injury measures except PCL (Acceptable)
TEG-089	BGS	Flex-GTR	 Flex-GTR dynamic certification test (inverse type) Flex-GTR car test (VW Golf, Ford Mondeo, Mercedes A-class,) Flex-GTR R&R evaluation using Coefficient of Variation Results Inverse test: Repeatability and Reproducibility is good or at least acceptable for all channels, very good long-term repeatability (reliability) after 40 tests with one legform Car test: Reproducibility partly not acceptable

Doc. #	Affiliation	Version	Summary
TEG-093	JAMA-JARI	Flex-GTR	 Flex-GTR dynamic certification test (pendulum type and inverse type) Flex-GT dynamic certification test (inverse type) Comparison of inverse test results (Flex-GT) with BASt results (Reproducibility) Comparison of repeated inverse and pendulum test results (Flex-GTR) Results BASt and JARI inverse test results were comparable Additional mass (+ 100 g for femur top and tibia bottom) effect was insignificant in the Inverse Test Additional mass (+ 100 g for femur top and tibia bottom) effect was also insignificant in the pendulum test
TEG-094	BASt	Flex-GTR	 Flex-GTR dynamic certification test (inverse type) R&R evaluation using Coefficient of Variation Proposal for Flex-GTR certification corridors (inverse type) Results CV: 1.4-5.2% for tibia, 6.3% for ACL, 5.3% for PCL, 3.8% for MCL

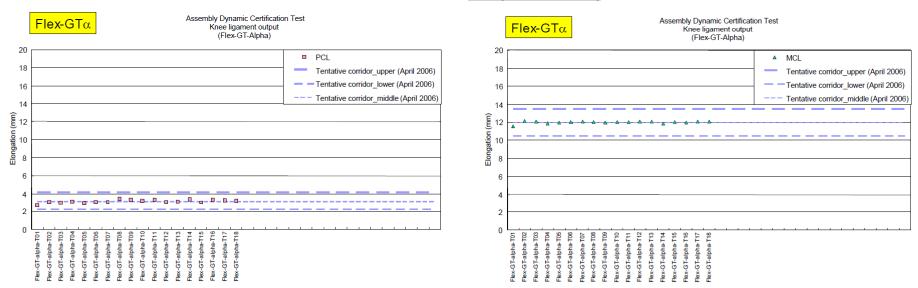

Doc. #	Affiliation	Version	Summary
TEG-105	JAMA-JARI	Flex-GTR	 Flex-GTR car tests using 8 different cars Flex-GTR repeatability evaluation in car test and dynamic certification test (pendulum type) using Coefficient of Variation Results Car test: Out of 7 injury measures * 8 cars = 56 measures, 'Good' (CV<3%) = 23, 'Acceptable' (3%<cv<7%) 'marginal'="" (7%<cv<10%)="5</li" 28,="" ==""> Pendulum test: Out of 7 injury measures, 'Good' = 5, 'Acceptable' = 2 (No 'Marginal') </cv<7%)>
TEG-112	NHTSA	Flex-GTR	 Flex-GTR car test (2005 Honda CR-V, 2002 Mazda Miata, 2006 Infiniti M35, 2006 VW Passat, 2001 Honda Civic) Flex-GTR repeatability evaluation Results Very good repeatability in two repeat tests, center impact, 5 vehicles
TEG-113	KATRI	Flex-GTR	 Flex-GTR car test (1 car) Evaluation of Flex-GTR repeatability using Coefficient of Variation Results Out of 7 injury measures * 3 impact locations = 21 measures, 'Good' (CV<3%) = 13, 'Acceptable' (3%<cv<7%) 'marginal'="1" 'not="" (cv="" (pcl),="" 5,="" =="" acceptable'="">10%) = 2 (PCL)</cv<7%)>

Results

Thigh-3 (maximum value)

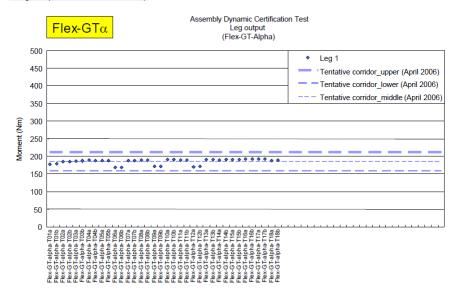


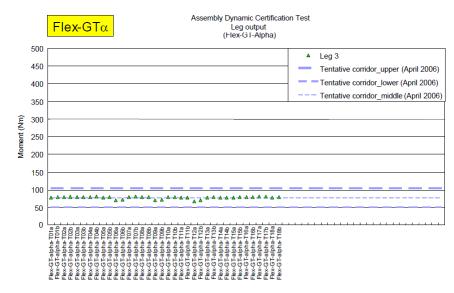
Thigh-2 (maximum value)

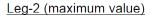


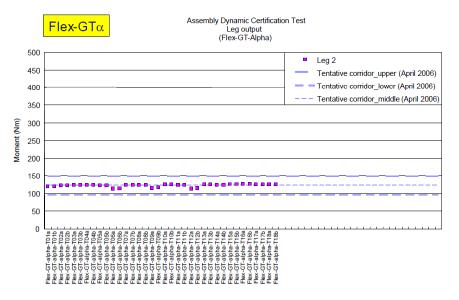
Results

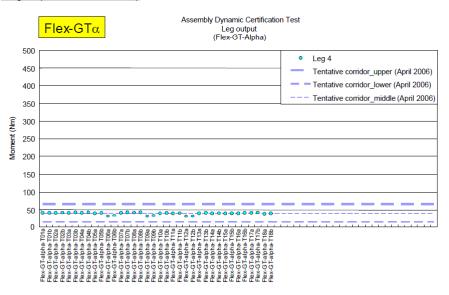
ACL (maximum value)

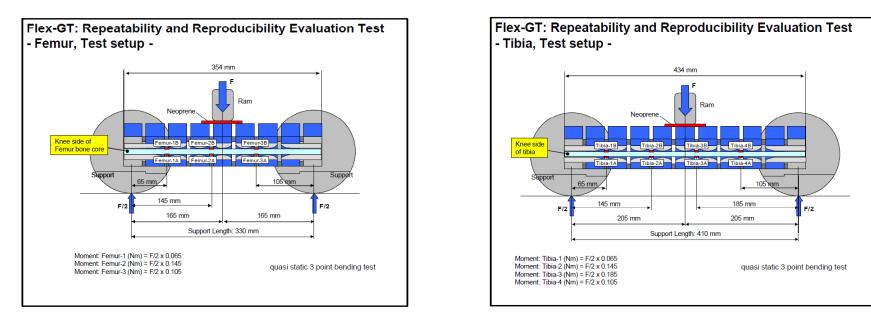

PCL (maximum value)

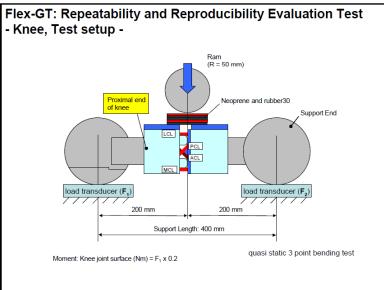

MCL (maximum value)

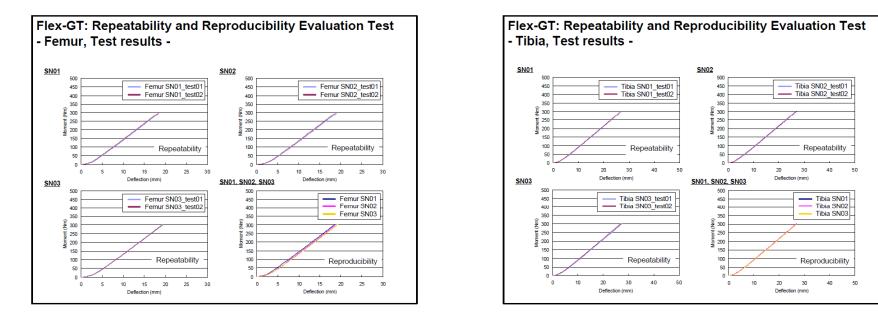

Results

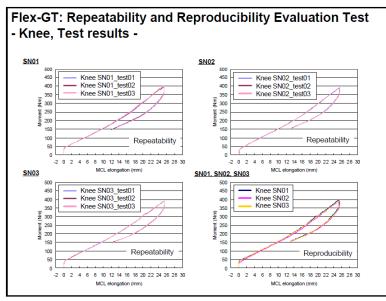

Leg-1 (maximum value)

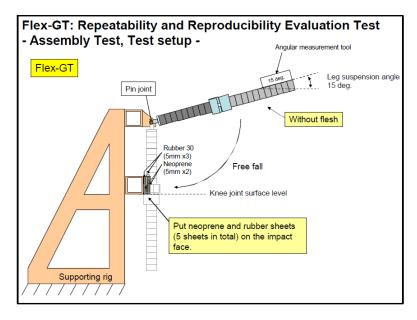

Leg-3 (maximum value)

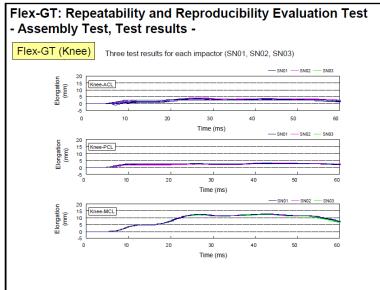


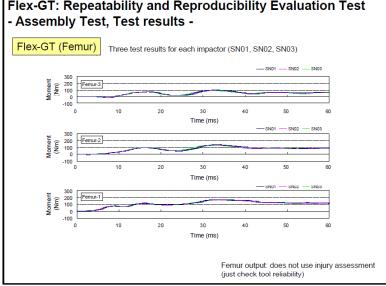


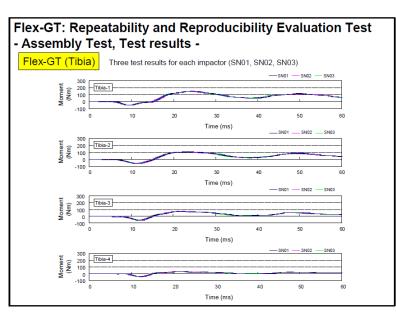


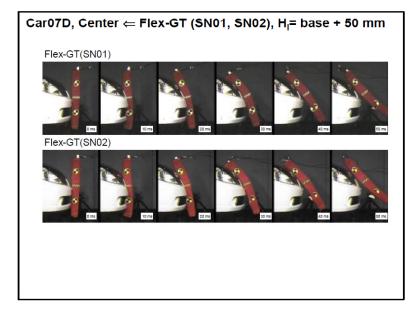

Leg-4 (maximum value)

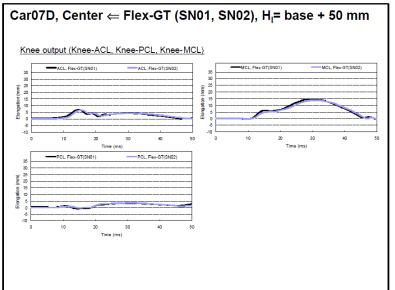


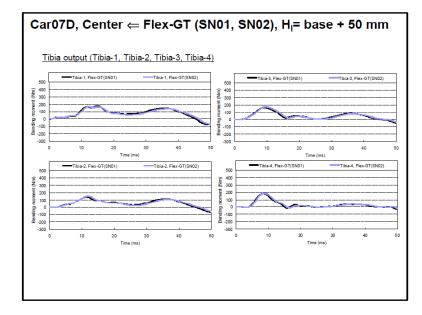


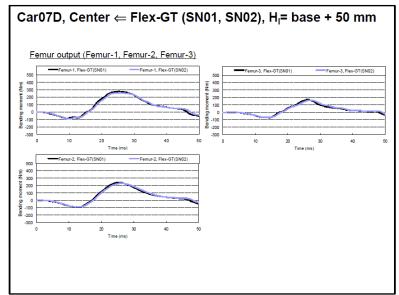


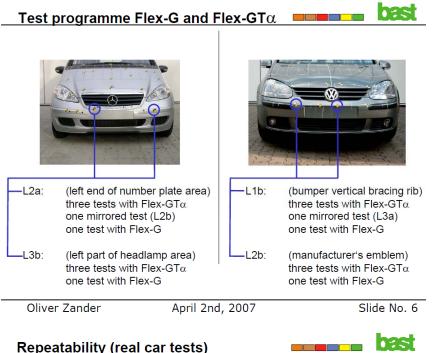


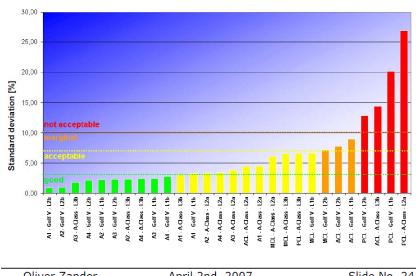


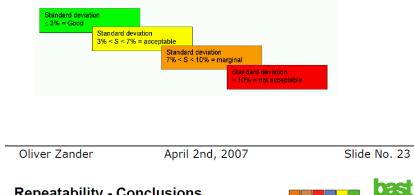




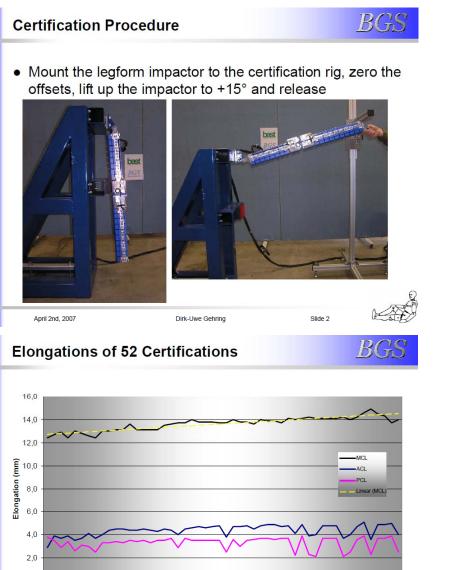


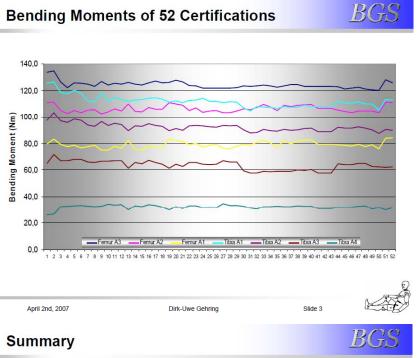

Flex-GT: Repeatability and Reproducibility Evaluation Test





Repeatability (real car tests)


- · test results of all four impact points being tested three times were taken into account (i.e. mirrored test points were not included)
- · assessment of the repeatability of test results for all four tibia strain gauges and the ACL, PCL and MCL elongations
- · assessment of the standard deviation according to the requirements for dummies (best practice):



Repeatability - Conclusions

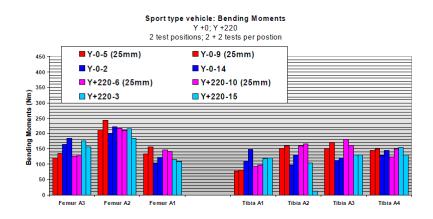
- · maximum tibia bending moments: SD between good and acceptable at all impact locations
- · knee elongation: SD still acceptable in five cases (hereof three MCL results)
- repeatability for tibia sections significantly higher than for the knee ligaments
- · additional tests under idealised impact conditions revealed a high sensitivity of the knee ligaments towards even marginally changed impact conditions (impact height, rotation)
- · further research on the variation of impact parameters needed

025

- 52 certification tests were performed during a test program with vehicle and test rig impacts
- The bending moments are comparatively constant
- ACL and PCL show also "constant" histories with a significant scatter
- MCL seems to increase with number of tests

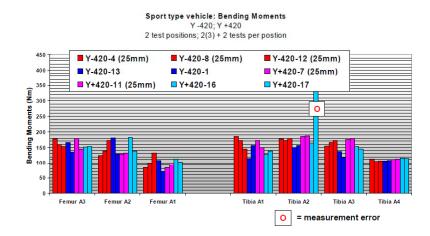
0,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52

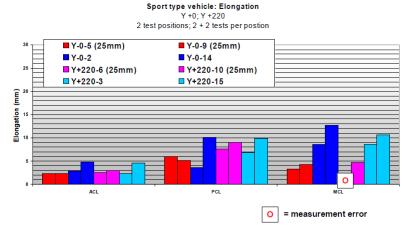


Slide 4

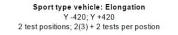
Slide 5

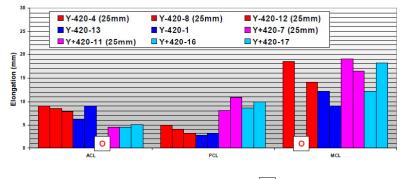

Preliminary Test Results with the Flex-GT α

FlexPLI and vehicle


Preliminary Test Results with the $\text{Flex-GT}\alpha$

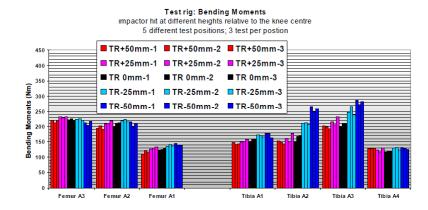
FlexPLI and vehicle


Preliminary Test Results with the Flex-GT α


FlexPLI and vehicle

Preliminary Test Results with the Flex-GT α

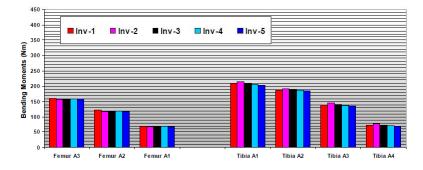
FlexPLI and vehicle



92

O = measurement error

Preliminary Test Results with the Flex-GT α


FlexPLI and test rig

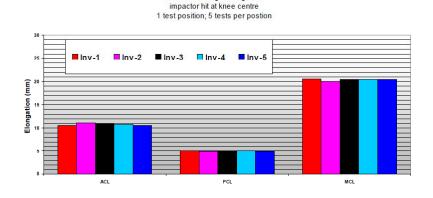
Preliminary Test Results with the Flex-GT α

Inverse testing of the FlexPLI



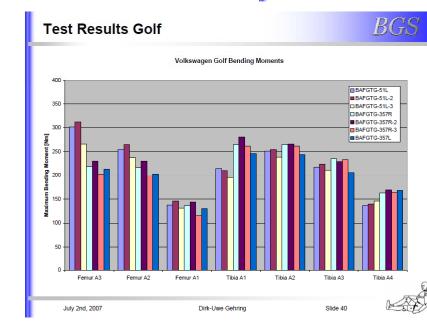
Preliminary Test Results with the Flex-GT α

FlexPLI and test rig

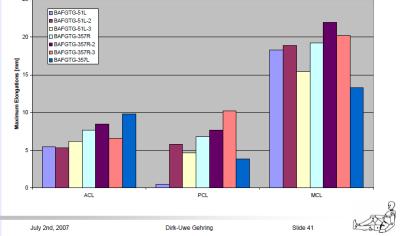

Test rig: Elongation impactor hit at different heights relative to the knee centre 5 different test positions; 3 test per postion

Preliminary Test Results with the Flex-GT α

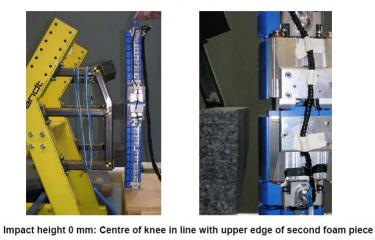
Inverse testing: Elongation


Inverse testing of the FlexPLI

<section-header><section-header><section-header><section-header><section-header><section-header><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row>


July 2nd, 2007

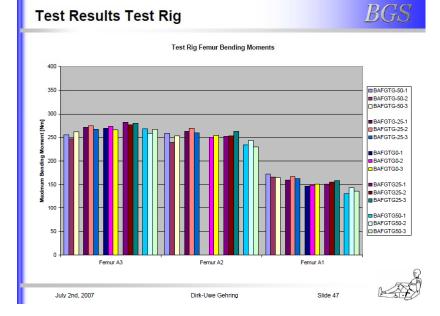
Dirk-Uwe Gehring


Slide 25

BGS

6

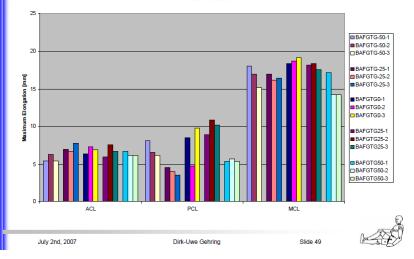
Tests with Test Rig (3)



SÐ Dirk-Uwe Gehring

July 2nd, 2007

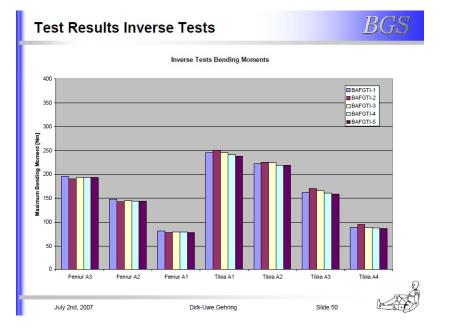
Slide 33


BGS **Test Results Test Rig** Test Rig Tibia Bending Moments 400 350 -BAFGTG-50-1 BAFGTG-50-2 BAFGTG-50-3 300 BAFGTG-25-1 BAFGTG-25-2 Έ BAFGTG-25-3 250 BAFGTG0-1 BAFGTG0-2 200 BAFGTG0-3 BAFGTG25-1 BAFGTG25-2 BAFGTG25-3 BAFGTG50-1 BAFGTG50-2 BAFGTG50-3 Tibia A1 Tibia 42 Tibia 43 Tibia 44 No P July 2nd, 2007 Dirk-Uwe Gehring Slide 48

Test Results Test Rig

BGS

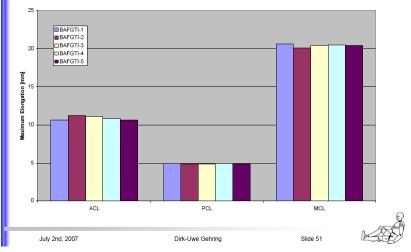
Test Rig Elongations

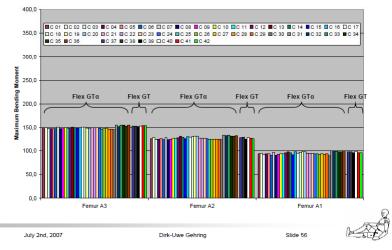


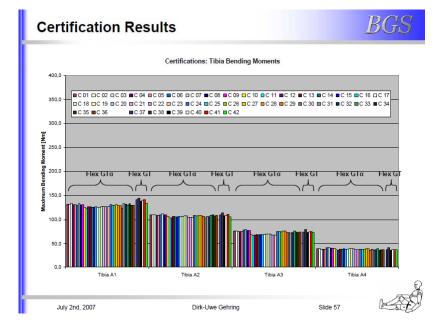
Impact height: Upper edge of aluminium honeycomb in line with centre of knee

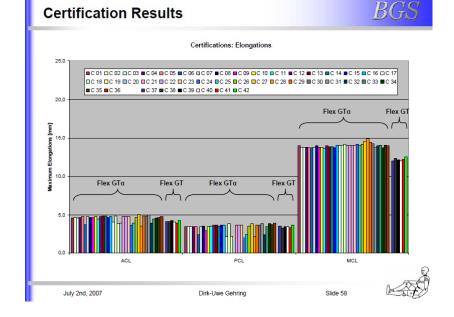
Dirk-Uwe Gehring

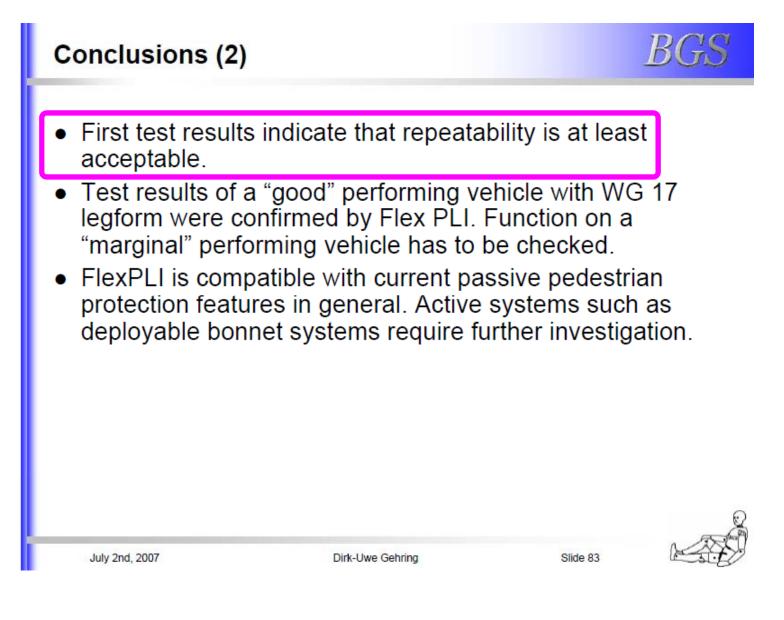
July 2nd, 2007

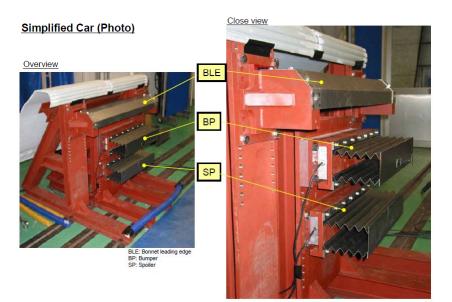


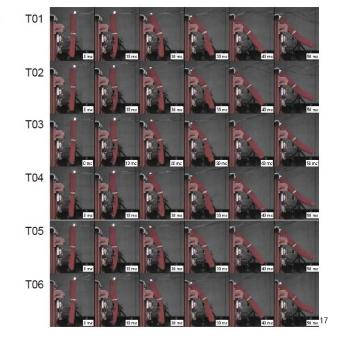

Slide 35

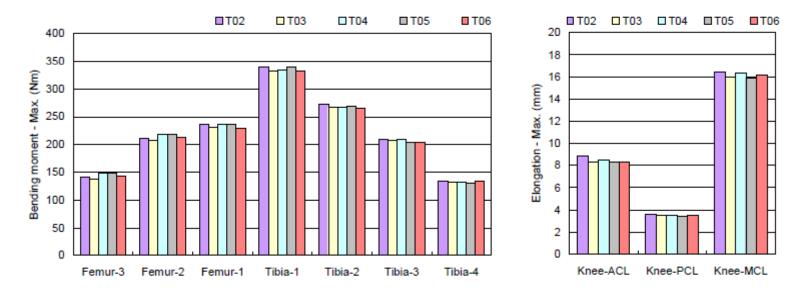



Inverse Tests Elongations

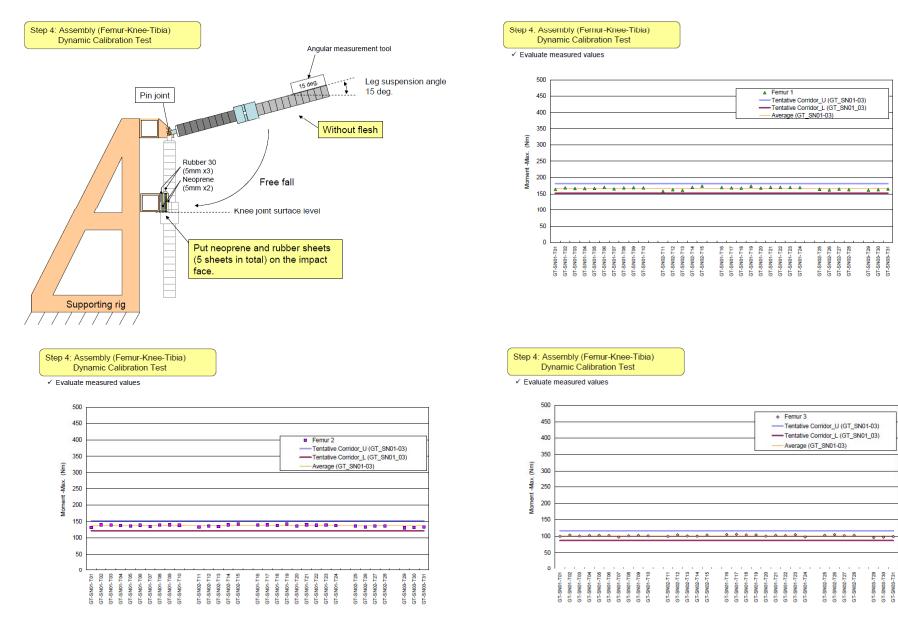



TEG-043 Certification Results BGS





Comparisons Kinematics


<u>Comparisons</u> Maximum Values (excludes T01 (40.7km/h) test result)

	Femur-3	Femur-2	Femur-1	Tibia-1	Tibia-2	Tibia-3	Tibia-4		ŀ	Knee-ACL	Knee-PCL	Knee-MCL
Avg. (Nn	n) 144	214	234	335	268	207	132	Avg. (m	m)	8.5	3.5	16.1
SD (Nn	1) 4.36	4.87	3.04	4.02	2.52	2.33	1.60	SD (m	m)	0.24	0.07	0.23
CV	3.0%	2.3%	1.3%	1.2%	0.9%	1.1%	1.2%	CV		2.9%	1.9%	1.5%
Assessme	ent Good	Good	Good	Good	Good	Good	Good	Assessm	nent	Good	Good	Good

SD: Standard deviation, CV: SD/Avg.

Good: less than 5%, Acceptable: from 5% to less than 7 %, Marginal: from 7% to less than 10 %, Not Acceptable: over 10 %

Femur 1

Tentative Corridor_U (GT_SN01-03) ----- Tentative Corridor_L (GT_SN01_03)

A A A A

T25 T26 T27

SN02-SN02-SN02-SN02-

. . .

T30 T31

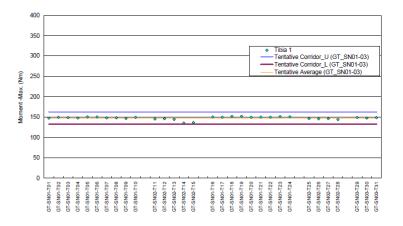
GT-SN03-T GT-SN03-T GT-SN03-T

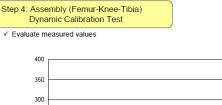
- Average (GT_SN01-03)

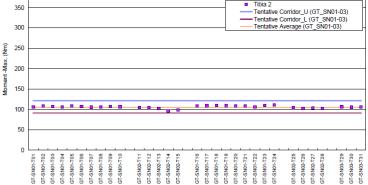
Femur 3

----- Tentative Corridor_U (GT_SN01-03) ----- Tentative Corridor_L (GT_SN01_03)

. . . .

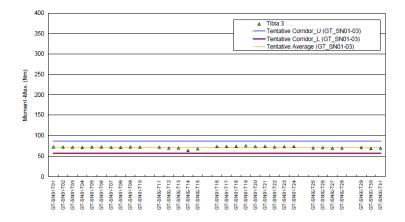

N02-SN02-SN02-

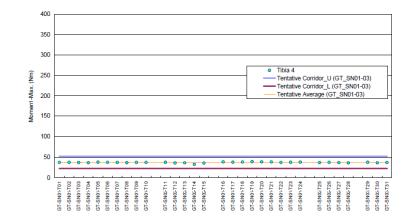

-EONS


Average (GT_SN01-03)

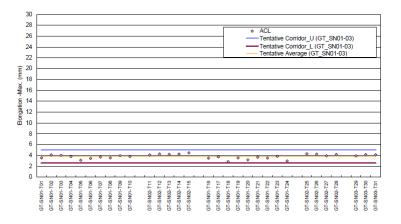
Step 4: Assembly (Femur-Knee-Tibia) Dynamic Calibration Test

✓ Evaluate measured values

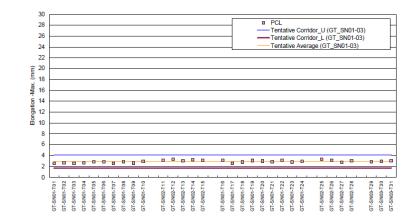


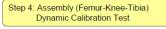

Step 4: Assembly (Femur-Knee-Tibia) Dynamic Calibration Test

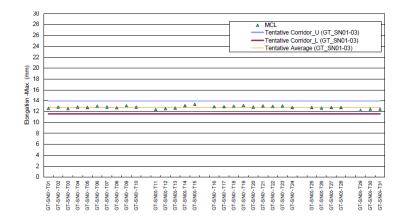
✓ Evaluate measured values

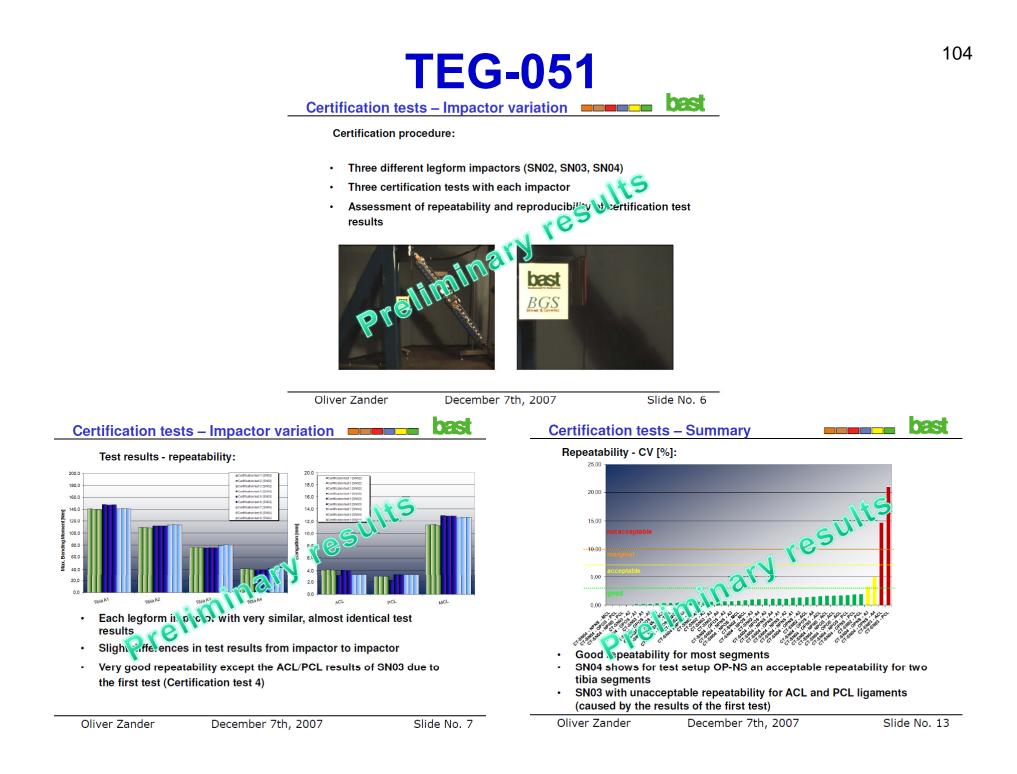


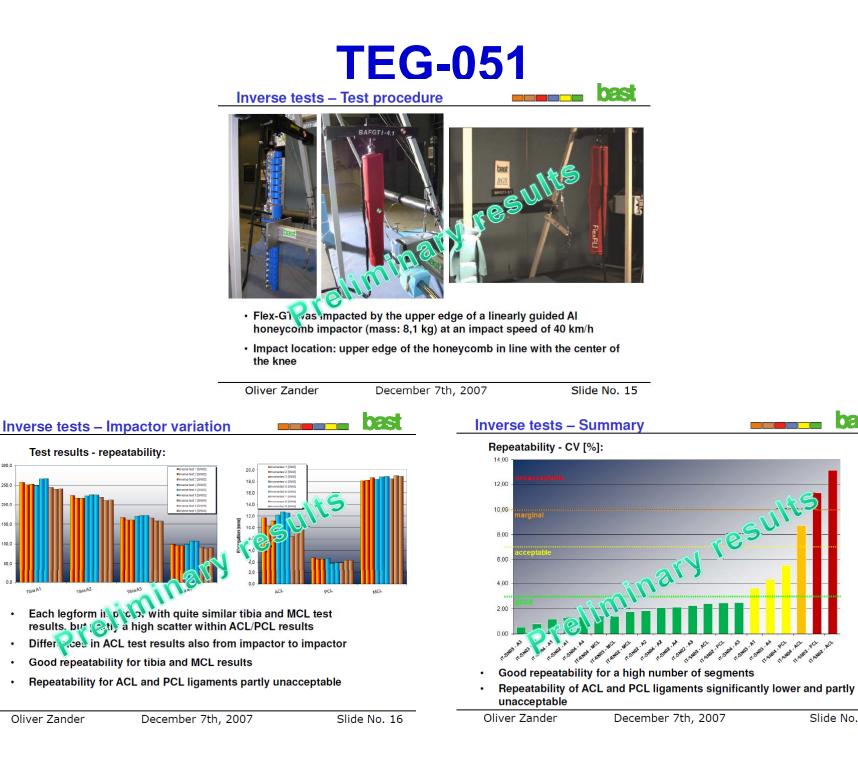
✓ Evaluate measured values


Step 4: Assembly (Femur-Knee-Tibia) Dynamic Calibration Test


✓ Evaluate measured values


Step 4: Assembly (Femur-Knee-Tibia) Dynamic Calibration Test


✓ Evaluate measured values



✓ Evaluate measured values

300.0

250.0

200

150,0

100,0

50.0 0.0

•

•

•

Slide No. 19

bast

Summary and next steps

- I) <u>Certification tests</u>:
- In general good repeatability of test results
- Slight variation of test results from impactor to impactor
- $r_{(tibia, MCL)} > r_{(ACL, PCL)}$
- r (ACL, PCL) sometimes unacceptable despite elimination of kn e was
- R good except ACL and partly PCL results
- No significant influence of test setup variation on agament results
- Replacement of cross beam padding and s beam padding and s beam padding and s beam padding replacement recommended
- II) Inverse tests:
- In general and MCL test results
- I' (tibia, MCL) (ACL, PCL)
- ACL characteristics vary from impactor to impactor
- R (tibia, MCL) good
- Very high scatter of ACL results

Tests Performed

2005 Honda CR-V Outboard Center

- Each location: 25 mm / 75 mm above ground reference level
- Two additional tests performed on Miata at 75 mm for repeatability

Repeatability

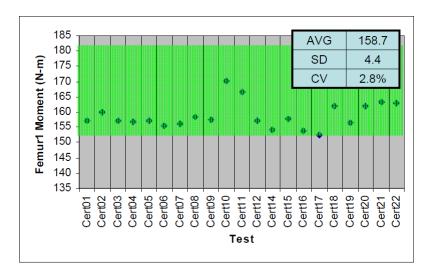
	Femur Bending Moment N-m			Tibia Bending Moment N-m				Knee ligament elongations mm			
	A3	A2	A1	A1	A2	A3	A4	ACL	PCL	MCL	
Mean	112	179	253	389	342	264	205	10.3	7.4	26.0	
Standard deviation	4.73	5.03	3.51	8.66	1.73	11.8 5	9.85	0.21	0.32	0.25	
Coefficient of Variation	4.2%	2.8 %	1.4 %	2.2 %	0.5 %	4.5 %	4.8%	2.0%	4.3%	1.0%	

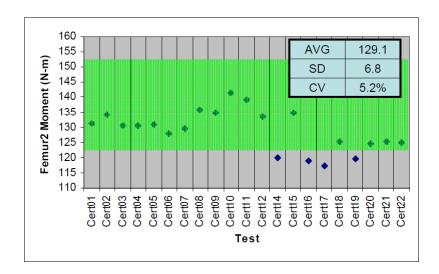
Summary

- Test experience and repeatability
 - Improved axial rotation with new roller support
 - Excellent repeatability
- Injury evaluation
 - Flex GT results ranked severity of impacts similarly to TRL testing but indicated higher injury severity
 - At least one Flex GT proposed injury limit exceeded for all three impact locations for 25 mm impact height
 - Effect of raising impact height to 75 mm varied
- Damage and durability
 - Several minor issues but no catastrophic damage
 - Need to test more aggressive vehicles to evaluate durability for US fleet

3 tests: Mazda Miata, Center impact, 75 mm impact height

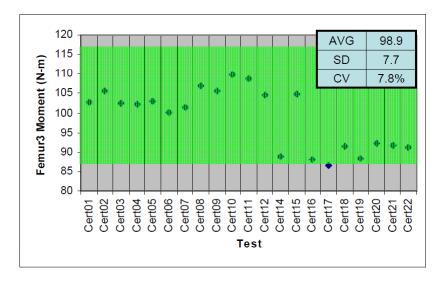
Test Setup


Test Record

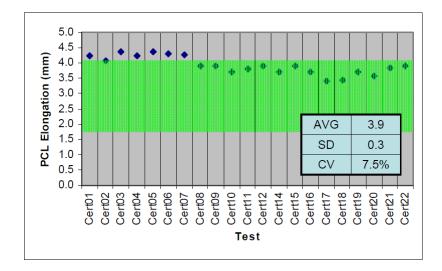


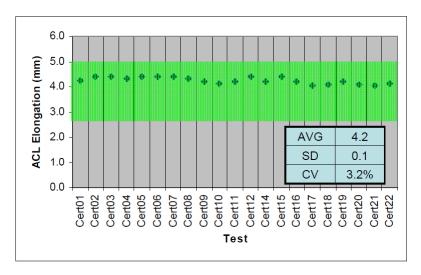
Test Number	Date	Time	Comments			
CERT01	2/13/2008	9:16 AM	Trial Test - TibiaA3 & PCL Failed Corridor			
CERT02	2/13/2008	10:08 AM	Trial Test - TibiaA3 & PCL Failed Corridor			
CERT03	2/13/2008	2:18 PM	Trial Test - TibiaA3 & PCL Failed Corridor			
CERT04	2/15/2008	10:01 AM	Added Redundant TibiaB3, Trial Test - TibiaA3 & PCL Failed Corridor			
CERT05	2/15/2008	10:07 AM	Bags Removed			
CERT06	2/15/2008	10:27 AM	Bags & 3 mm Spacers Removed			
CERT07	2/15/2008	10:52 AM	Spacers Removed, Pre CRV01 Test			
CERT08	2/22/2008	9:26 AM	Bags Put Back On, Post CRV01 Test, Pre CRV02 Test			
CERT09	2/26/2008	1:51 PM	Post CRV02 Test			
CERT10	2/26/2008	3:00 PM	Wrapped Connection Bolt in Electrical Tape			
CERT11	2/26/2008	3:25 PM	Pre CRV03 Test, Wrapped New Connection Bolt in Electrical Tape & Added Side O-Ring			
CERT12	2/29/2008	9:47 AM	Post CRV03 Test			
CERT13			No test CERT13			
CERT14	3/4/2008	9:18 AM	Post CR-V F04, changed to plastic bolt to fix legform to fixture.			
CERT15	3/4/2008	3:41 PM	Added accelerometer and returned to original bolt.			
CERT16	3/5/2008	7:48 AM	Returned to plastic bolt			
CERT17	3/12/2008	1:36 PM	Following speed shots, prior to MIATA F01			
CERT18	3/13/2008	1:03 PM	Following MIATA F01			
CERT19	3/14/2008	8:17 AM	Before MIATA F02			
CERT20	3/18/2008	7:50 AM	Following MIATA F02, Before MIATA F03			
CERT21	3/19/2008	6:43 AM	Following MIATA F03, Before MIATA F04			
CERT22	3/20/2008	9:08 AM	Following MIATA F04			

Femur A1

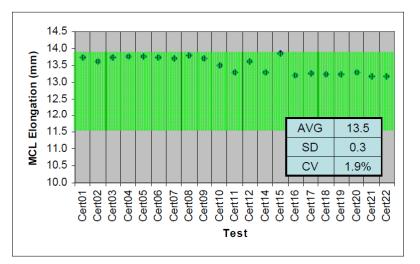


Femur A2

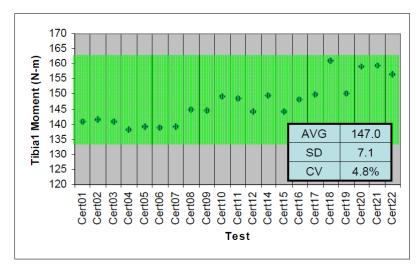


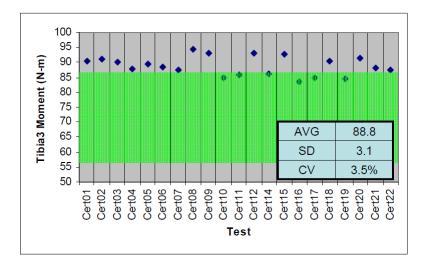

Femur A3

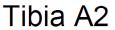
ACL

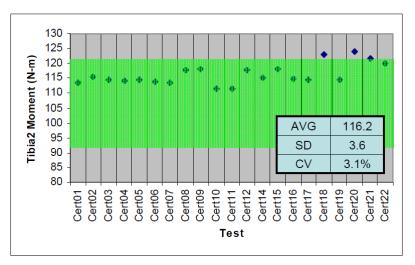


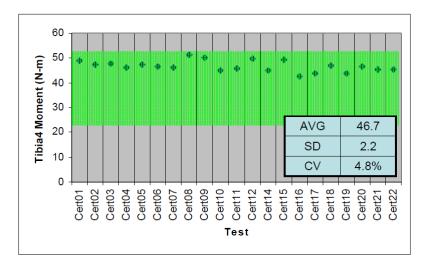
PCL




MCL




Tibia A1


Tibia A3

Tibia A4

Summary

- Certification test does not seem to be sensitive to any of the following:
 - Rig connection/support
 - Impact plate width
 - Release method
 - Offset method
- Isolation of leg from rig seems to help reduce noise in moment signals
- Certification data was very repeatable, but did not always fall within the provided corridors

I III

FLEX-PLI-GTR dynamic calibration set-up

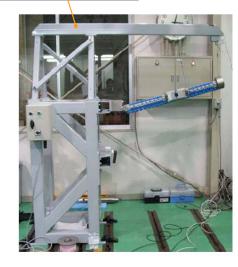
Disassembly for transport Top bar and release mechanism Top pivot minimum play Accurate shoulder bolt Tibia top pivot Hinged brackets off board cables 10 deg inclined stopper bar 5kg calibration mass bottom femur

First Technology

FLEX-PLI-GTR dynamic calibration

188011.02	TEST #1 on Leg assemble #1
188012.02	TEST #2 on Leg assemble #1
188013.02	TEST #3 on Leg assemble #1, stopper block #1
188014.02	TEST #4 on Leg assemble #1, stopper block #2
188015.02	TEST #1 on Leg assemble #2, stopper block #2
188016.02	TEST #2 on Leg assemble #2, stopper block #1
188017.02	TEST #3 on Leg assemble #2, stopper block #2
188018.02	TEST #4 on Leg assemble #2, stopper block #1
188019.02	TEST #5 on Leg assemble #2, stopper block #1
188020.02	TEST #1 on Leg assemble #3, stopper block #1
188021.02	TEST #2 on Leg assemble #3, stopper block #2, (sol 2, 15.1 deg)
188023.02	TEST #4 on Leg assemble #3, stopper block #1, (sol 2, 15.1 deg)

13



Summary dynamic calibration

TEST #1 Leg #1	75.1	177	135	90	246	201	160	108	8.03	22.4	4.29	4.99
TEST #2 Leg #1	82.9	181	138	92	247	201	160	109	8.59	22.5	4.33	4.41
TEST #3 Leg #1, block #1	82.2	179	136	91	245	200	159	108	8.61	22.4	4.30	4.37
TEST #4 Leg #1, block #1	78.7	175	135	90	241	195	156	106	8.64	22.5	4.24	4.38
TEST #1 Leg #2, block #2	74.0	175	134	90	235	197	152	106	8.16	22.2	4.30	4.85
TEST #2 Leg #2, block #1	69.2	177	135	92	241	199	153	107	7.79	22.4	4.42	5.26
TEST #3 Leg #2, block #2	71.6	181	137	94	245	204	158	111	7.89	22.4	4.46	5.25
TEST #4 Leg #2, block #1	72.1	176	135	92	241	199	153	107	7.84	22.4	4.44	5.22
TEST #5 Leg #2, block #1	73.3	183	140	96	248	205	158	110	7.87	22.5	4.48	5.18
TEST #1 Leg #3, block #1	77.2	183	138	91	239	204	170	107	8.34	22.3	4.34	4.90
TEST #2 Leg #3, block #2	75.3	183	138	91	241	205	171	108	8.30	22.4	4.40	4.95
TEST #4 Leg #3, block #1	71.8	183	138	91	242	204	171	109	8.17	22.4	4.43	5.1
GTR Dynamic calibratio n results	Acceln. knee	Femur Gauge 1	Femur Gauge 2	Femur Gauge 3	Tibia Gauge 1	Tibia Gauge 2	Tibia Gauge 3	Tibia Gauge 4	Peak ACL	Peak MCL	Peak LCL	Peak PCL
Average	75.3	179.4	136.7	91.6	242.5	201.1	160.0	108.0	8.19	22.4	4.37	4.9
St.Dev	4.2	3.1	1.9	1.7	3.7	3.3	6.8	1.5	0.3	0.1	0.1	0.3
CV[%]	5.6	1.7	1.4	1.9	1.5	1.6	4.3	1.4	3.8	0.3	1.8	7.0
Criteria		300	300	300	300	300	300	300	11	20	20	11
St.Dev/ Criteria [%]		1.0	0.6	0.6	1.2	1.1	2.3	0.5	2.8	0.4	0.4	3.1

Test Rigs, contd.

Assembly Pendulum type Calibration Test Rig (Type 2) (can accommodate Flex-GTR-proto only)

E1: Repeatability of the Flex-GTR-prototype

Assembly Pendulum Test Series Impactor: Flex-GTR-prototype (SN02) Test Method: Flex-GTR-proto. (assembly, pendulum) Test Rig: Flex-GTR-proto. (assembly, pendulum)

			Ν	Max. values	**		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
Flex-GTR-proto. (SN02), P4	253.9	201.1	160.3	106.8	8.28	4.97	22.6
Flex-GTR-proto. (SN02), P5	247.4	203.1	157.4	110.0	8.24	4.90	22.5
Flex-GTR-proto. (SN02), P6	246.7	202.8	157.7	109.9	8.20	4.85	22.5
Avg.	249.3	202.3	158.5	108.9	8.24	4.91	22.5
St. Dev.	3.97	1.08	1.59	1.82	0.04	0.06	0.06
CV (%)	1.59	0.53	1.01	1.67	0.49	1.23	0.26
Judgement	Good	Good	Good	Good	Good	Good	Good
t-IARV*	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	1.25	0.34	0.50	0.57	0.31	0.47	0.29
Judgement	Good	Good	Good	Good	Good	Good	Good

Iniury

Assessment

Items

* t-IARV: Tentative Injury Assessment Reference Values

** Injury assessement items and monitoring items were evaluated.

Judgements Good: < 3% Acceptable: 3% ≤ and < 7% Marginal: 7% ≤ and < 10% Monitoring Items Not Acceptable: > 10%

E1: Repeatability of the Flex-GTR-prototype

Dynamic Assembly Pendulum Test Series Impactor: Flex-GTR-prototype (SN01) Test Method: Flex-GTR-proto. (assembly, pendulum) Test Rig: Flex-GTR-proto. (assembly, pendulum)

				Max. values	5**		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCI
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
Flex-GTR-proto. (SN01), P1	239.7	194.0	154.9	106.4	8.19	4.11	22.4
Flex-GTR-proto. (SN01), P2	241.2	193.6	152.8	104.1	7.85	4.62	22.3
Flex-GTR-proto. (SN01), P3	241.8	193.6	153.4	104.5	8.10	4.41	22.4
Avg.	240.9	193.7	153.7	105.0	8.05	4.38	22.4
St. Dev.	1.08	0.23	1.08	1.23	0.18	0.26	0.06
CV (%)	0.45	0.12	0.70	1.17	2.19	5.85	0.26
Judgement	Good	Good	Good	Good	Good	Acceptable	Good
t-IRAV	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	0.34	0.07	0.34	0.39	1.39	2.02	0.29
Judgement	Good	Good	Good	Good	Good	Good	Good
					Judge	ments	
 t-IARV: Tentative Injury Assessn Injury assessement items and m 			aluated			Good: < 39	%
					Accep	table: 3% ≤	and < 7%
		Injun		Monitoring	Marg	inal: 7% ≤ an	d < 10%
		Assessn					

Items

Items

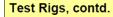
E1: Repeatability of the Flex-GTR-prototype

Assembly Pendulum Test Series Impactor: Flex-GTR-prototype (SN03) Test Method: Flex-GTR-proto. (assembly, pendulum) Test Rig: Flex-GTR-proto. (assembly, pendulum)

_			Ν	lax. values	**		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
Flex-GTR-proto. (SN03), P7	235.8	197.7	165.5	105.9	8.09	4.83	22.3
Flex-GTR-proto. (SN03), P8	236.0	198.5	166.3	105.6	7.31	5.57	22.3
Flex-GTR-proto. (SN03), P9	245.1	206.9	173.4	110.8	8.43	4.96	22.7
Avg.	239.0	201.0	168.4	107.4	7.94	5.12	22.4
St. Dev.	5.31	5.10	4.35	2.92	0.57	0.40	0.23
CV (%)	2.22	2.54	2.58	2.72	7.23	7.72	1.03
Judgement	Good	Good	Good	Good	Marginal	Marginal	Good
t-IARV*	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	1.67	1.60	1.37	0.92	4.52	3.11	1.15
Judgement	Good	Good	Good	Good	Acceptable	Acceptable	Good

Injury Assessment

Items


Monitoring

Items

* t-IARV: Tentative Injury Assessment Reference Values ** Injury assessement items and monitoring items were evaluated.

Judgements Good: < 3%
Acceptable: 3% ≤ and < 7%
Marginal: 7% ≤ and < 10%
Not Acceptable: > 10%

Not Acceptable: > 10%

Simplified Car: Type 1 Photo

Overview

E2: Reproducibility of the Flex-GTR-prototype

Simplified Car Test Series Impactor: Flex-GTR-prototype (SN01, SN02, SN03) Test Method: Subsystem (Free fright) Test Rig: Simplified Car (Type 1)

			Ν	Max. values	**		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
Flex-GTR-prot (SN01), S1	317.2	258.5	214.7	127.7	7.81	6.54	19.2
Flex-GTR-prot (SN02), Avg.***	342.1	277.9	231.0	145.5	8.28	6.72	19.3
Flex-GTR-prot (SN03), S6	330.9	275.6	240.6	140.8	7.80	6.71	19.1
Avg.	330.1	270.7	228.8	138.0	7.96	6.66	19.2
St. Dev.	12.47	10.60	13.09	9.22	0.27	0.10	0.10
CV (%)	3.78	3.92	5.72	6.68	3.44	1.52	0.52
Judgement	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Good	Good
t-IARV*	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	3.92	3.33	4.12	2.90	2.16	0.80	0.50
Judgement	Acceptable	Acceptable	Acceptable	Good	Good	Good	Good

ements

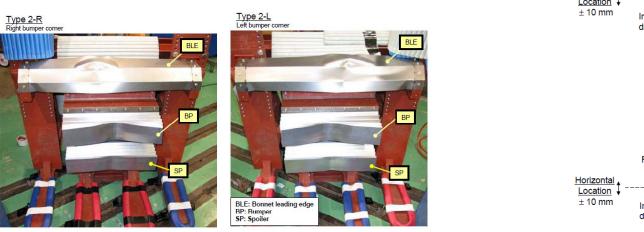
Not Acceptable: > 10%

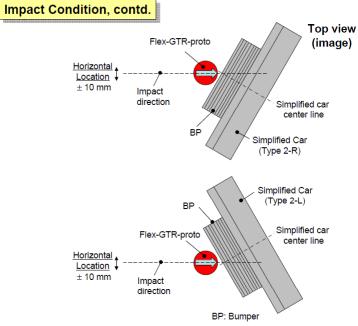
ptable: $3\% \le \text{and} \le 7\%$ ginal: $7\% \le \text{and} \le 10\%$

* t IARV: Tontativo Injury Accoccmont Roforonco Valuoc			Judge
** Injury assessement items and monitoring items were evalu	uated.		
*** Flex-GTR-proto (SN02), Avg.: Average data of S2-S5			Accep
	Injury Assessment	Monitoring	Marg
	Assessment Items	Items	Not

E1: Repeatability of the Flex-GTR-prototype

Simplified Car Test Series Impactor: Flex-GTR-prototype (SN02) Test Method: Subsystem (Free fright) Test Rig: Simplified Car (Type 1)


_	Max. values**								
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MC		
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)		
Flex-GTR-prot. (SN02), S2	338.2	276.3	227.7	147.7	8.32	6.52	19.3		
Flex-GTR-prot. (SN02), S3	350.6	285.5	236.5	148.5	8.28	6.61	19.3		
Flex-GTR-prot. (SN02), S4	340.1	276.4	228.1	138.4	8.43	6.85	19.6		
Flex-GTR-prot. (SN02), S5	339.4	273.5	231.6	147.3	8.08	6.90	18.8		
Avg.	342.1	277.9	231.0	145.5	8.28	6.72	19.25		
St. Dev.	5.74	5.23	4.08	4.74	0.15	0.18	0.33		
CV (%)	1.68	1.88	1.77	3.26	1.77	2.74	1.72		
Judgement	Good	Good	Good	Acceptable	Good	Good	Good		
l-IARV*	318	318	318	318	12.7	12.7	20.0		
St.Dev./t-IARV (%)	1.80	1.64	1.28	1.49	1.15	1.45	1.66		
Judgement	Good	Good	Good	Good	Good	Good	Good		
					Judger	ments			
* t-IARV: Tentative Injury Assessm ** Injury assessement items and m			uated.			Good: < 39	%		
Acceptable: 3% ≤ and < 7%									
		Injury		onitoring	Margi	inal: 7% ≤ an	d < 10%		
		Assessm Items		Items	Not	Acceptable: > 10%			


Conclusions

- In this research, the following items were evaluated.
 - ✓ E1: <u>Repeatability</u> of the <u>Flex-GTR-prototype</u>
 - ✓ E2: <u>Reproducibility</u> of the <u>Flex-GTR-prototype</u>
 - ✓ F3: Comparability between the Elex-GT and Elex-GTR-prototype
- As a result, fairly <u>Good Repeatability and Reproducibility</u> of <u>Flex-GTR-prototype</u> were observed (majorities of CV values are less than 3%).
- As for the <u>comparability</u> between the <u>FIEX-GT and FIEX-GT R prototype</u>, some differences were observed between them. Most of the maximum value <u>ratios of</u> the FIEX-GTR-proto relative to the FIEX-GT are less than 1.1.
- <u>The difference</u> between the Flex-GT and Flex-GTR-proto has a chance to affect the injury threshold values
- Therefore <u>correlations</u> between the <u>Flex-GTR-prototype</u> and <u>Human Lower</u> <u>Limbs</u> was <u>analyzed</u> by JAMA-JARI using a computer simulation analysis.

Test Rigs, contd.

Simplified Car: Type 2 (Photo: After test)

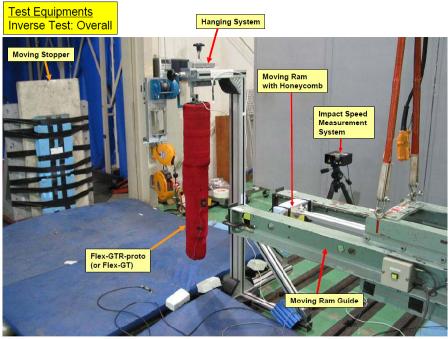
Maximum Values

(Flex-GTR-prototype, L and R Bumper Corner Impact)

Comparability Check for Flex-GTR-prototype (SN03) Under Right and Left Bumper Corner Impact Test Method: Subsystem (Free fright) Test Ric Simolified Car

			Ν	lax. values	**			
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCI	
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)	
Simplified Car (Type 2-L), Avg.	277.9	274.8	275.5	144.3	11.86	7.95	19.1	
Simplified Car (Type 2-R), Avg	285.6	281.5	278.7	146.5	11.81	7.38	19.8	
Avg.	281.8	278.1	277.1	145.4	11.84	7.67	19.42	
St. Dev.	5.42	4.77	2.30	1.55	0.04	0.40	0.49	
CV (%)	1.92	1.72	0.83	1.06	0.30	5.26	2.51	
Judgement	Good	Good	Good	Good	Good	Acceptable	Good	
t-IARV*	318	318	318	318	12.7	12.7	20.0	
St.Dev./t-IARV (%)	1.70	1.50	0.72	0.49	0.28	3.17	2.44	
Judgement	Good	Good	Good	Good	Good	Acceptable	Good	
t-IARV: Tentative Injury Assessment Reference Values Injury assessment items and monitoring items were evaluated. Acceptable: 3% ≤ and < 7%								
			Injury Assessment Items	Monitoring Items		inal: 7% ≤ an Acceptable:		

	BGS		ests: Three It of Variatio				B
Standard inverse calibration		Sensor	Femur A3	Femur A2	Femur A1	ACL	P
Three tests per legform		cv	6,2	5,5	3,6	6,3	5
		Rating	Acceptable	Acceptable	Acceptable	Acceptable	Acce
		Tibia A1	Tibia A2	Tibia A3	Tibia A4	MCL	Ŀ
		1,4	2,2	5,2	1,8	3,8	1
		Good	Good	Acceptable	Good	Acceptable	Go
BAFOTRI-1	BAFGTR3-11						
May 19th, 2009 BGS Böhme & Gehring GmbH	Slide 5	May 19th, 20	09	BGS Böhme & Ge	ehring GmbH	Slide 9	Q
erformed test series and results	BGS		ests: Monde				
Vehicle tests			t of Variatio		Femur A1		B
Ford Mondeo		Sensor	Femur A3	Femur A2	Femur A1	ACL	P
 Ford Mondeo First impact location Y = 0 mm 		Sensor CV	Femur A3 12,5	Femur A2 8,4	5,3	7,6	P 1:
 Ford Mondeo First impact location Y = 0 mm All three legforms Three repetitions 		Sensor	Femur A3	Femur A2			Po 13 N accep
 Ford Mondeo First impact location Y = 0 mm All three legforms Three repetitions Sum: 9 tests Remark: LCL potentiometer failure at 		Sensor CV Rating	Femur A3 12,5 Not acceptable	Femur A2 8,4 Marginal	5,3 Acceptable	7,6 Marginal	P(13 N accep
 Ford Mondeo First impact location Y = 0 mm All three legforms Three repetitions Sum: 9 tests Remark: LCL potentiometer failure at legform no. 3 (Slice) 		Sensor CV	Femur A3 12,5 Not	Femur A2 8,4	5,3	7,6	Pi 13 N accej
 Ford Mondeo First impact location Y = 0 mm All three legforms Three repetitions Sum: 9 tests Remark: LCL potentiometer failure at legform no. 3 (Slice) Second impact location Y = -450 mm 		Sensor CV Rating	Femur A3 12,5 Not acceptable	Femur A2 8,4 Marginal	5,3 Acceptable	7,6 Marginal	Pi 13 N accej
 First impact location Y = 0 mm All three legforms Three repetitions Sum: 9 tests Remark: LCL potentiometer failure at legform no. 3 (Slice) Second impact location Y = -450 mm 		Sensor CV Rating Tibia A1	Femur A3 12,5 Not acceptable Tibia A2 8,2	Femur A2 8,4 Marginal Tibia A3	5,3 Acceptable Tibia A4 5,9	7,6 Marginal MCL	P(13 N


Conclusions (1)

- Inverse tests: Repeatability and Reproducibility is good or at least acceptable for all channels
- Inverse tests: Tibia bending values up to 17 % higher than Flex GT, MCL 11% higher, ACL 5% lower, PCL 26% higher.
- Long-term repeatability (reliability): Very good after 40 tests with one legform (including 2 repairs with disassemblies)
- Vehicle tests: Reproducibility partly not acceptable
- Vehicle tests: Values generally higher than Flex GT
- Vehicle oblique tests: Impactor responses not exactly symmetrical

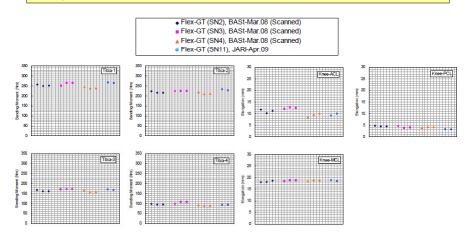
Slide 38

Inverse Test Test Conditions

Test	Flex	K-PLI		Impact	Speed	Temperature	Relative Humidity
ID	type	SN	Modification	(m/s)	(km/h)	(degrees C)	(%)
T-01	Flex-GT	11	None	No data	No data	20.3	48
T-02	Flex-GT	11	None	11.11	39.98	20.8	47
T-03	Flex-GTR-proto	3	None	11.23	40.41	21.6	35
T-04	Flex-GTR-proto	3	None	11.10	39.96	22.2	34
T-05	Flex-GTR-proto	3	None	11.01	39.62	22.2	33
T-06	Flex-GTR-proto	3	Add Mass	11.16	40.18	21.5	26
T-07	Flex-GTR-proto	3	Add Mass	11.04	39.75	21.9	26
T-08	Flex-GTR-proto	3	Add Mass	11.01	39.64	21.4	29
T-09	Flex-GTR-proto	3	None	10.93	39.34	21.5	28
T-10	Flex-GTR-proto	3	None	No data	No data	21.2	28
T-11	Flex-GTR-proto	3	None	10.77	38.78	20.7	29
T-12	Flex-GTR-proto	3	None	11.17	40.21	20.6	30
T-13	Flex GTR proto	3	None	11.21	40.35	20.7	31
T-14	Flex-GTR-proto	3	None	11.09	39.91	20.5	34
T-15	Flex-GTR-proto	3	None	11.20	40.31	20.5	35
T-16	Flex-GTR-proto	3	None	11.18	40.25	18.9	41
T-17	Flex-GTR-proto	3	None	11.30	40.67	20.2	34
T-18	Flex-GTR-proto	3	None	11.25	40.5	21.5	29

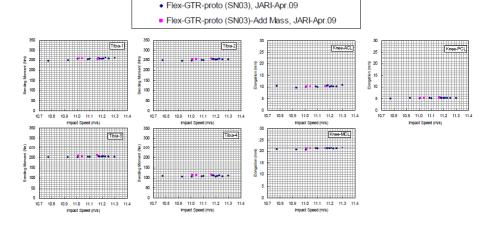
Pendulum Test Test Conditions

Test	Fle		I	Temperature	Relative Humidity
ID	type	SN	Modification	(degrees C)	(%)
PT-01	Flex-GTR-proto	3	None	No data	No data
PT-02	Flex-GTR-proto	3	None	No data	No data
PT-03	Flex-GTR-proto	3	None	No data	No data
PT-04	Flex-GTR-proto	3	None	21.6	35
PT-05	Flex-GTR-proto	3	None	22.2	34
PT-06	Flex-GTR-proto	3	None	22.2	33
PT-07	Flex-GTR-proto	3	Add Mass	21.5	26
PT-08	Flex-GTR-proto	3	Add Mass	21.9	26
PT-09	Flex-GTR-proto	3	Add Mass	21.4	29
PT-10	Flex-GTR-proto	3	None	21.5	28
PT-11	Flex-GTR-proto	3	None	21.2	28
PT-12	Flex-GTR-proto	3	None	20.7	29
PT-13	Flex-GTR-proto	3	None	20.6	30
PT-14	Flex-GTR-proto	3	None	20.7	31
PT-15	Flex-GTR-proto	3	None	20.5	34
PT-16	Flex-GTR-proto	3	None	18.9	41
PT-17	Flex-GTR-proto	3	None	18.9	41
PT-18	Flex-GTR-proto	3	None	20.2	34
PT-19	Flex-GTR-proto	3	None	21.5	29

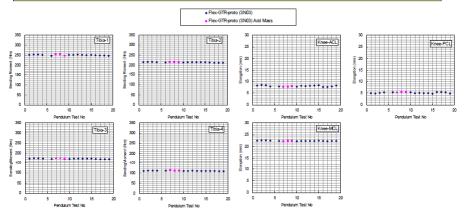

* SN: Serial Number, Add Mass: Added 100g mass at the top and botom of the impactor

* SN: Serial Number, Add Mass: Added 100g mass at the top and botom of the impactor

Inverse Test Results


Comparability with BASt Test Results (Flex-GT)

Based on the Flex-GT test results, <u>BASt and JARI test results</u> were <u>looked as</u> <u>comparable</u>.


Inverse Test Results Additional Mass Effect

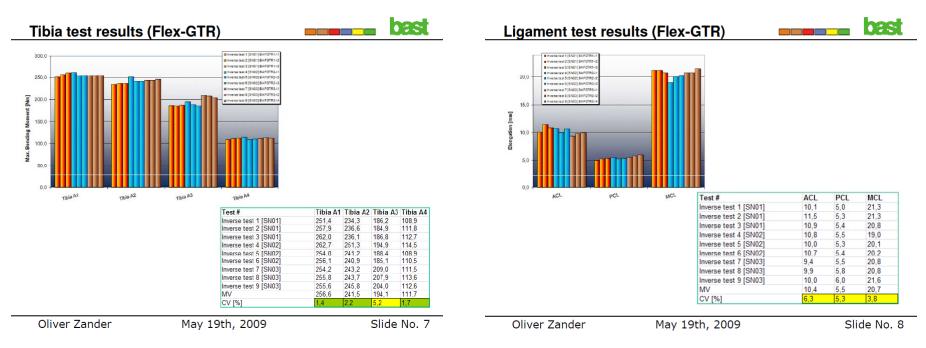
 <u>Additional mass</u> (+ 100 g for femur top and tibia bottom) <u>effect</u> was <u>insignificant in the Inverse Test</u>.

Pendulum Test Results Additional Mass Effect

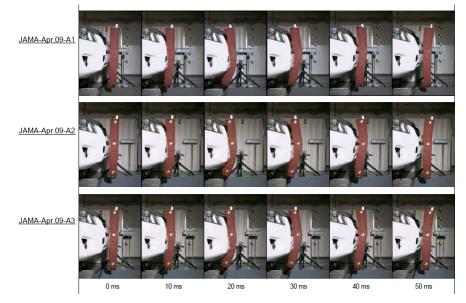
 <u>Additional mass</u> (+ 100 g for femur top and tibia bottom) <u>effect</u> was also insignificant in the pendulum test.

Dynamic full assembly certification test

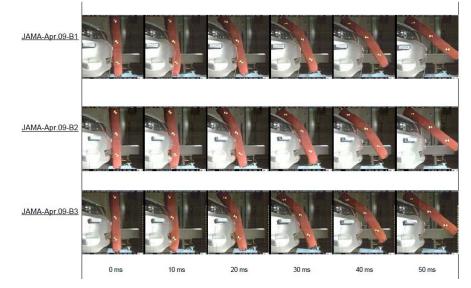
- Flex PLI (with flesh and skin) is impacted by the upper edge of a linearly guided AI honeycomb impactor at a previously defined impact speed
- Impact location: upper edge of the honeycomb in line with center of knee
- Measurement items pass/fail parameters: three string potentiometers (ACL, PCL, MCL), four strain gauges (tibia moments)


Oliver Zander

May


May 19th, 2009

Slide No. 4


0251

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Kinematics (JAMA-Apr.09-A1, A2, A3)

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Kinematics (JAMA-Apr.09-B1, B2, B3)

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-Apr.09-A1, A2, A3)

Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car

	Max. values						
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JAMA-Apr.09-A1	329.1	391.7	244.1	83.1	7.50	4.11	14.4
JAMA-Apr.09-A2	345.3	390.6	253.0	88.0	7.67	4.52	15.5
JAMA-Apr.09-A3	332.0	384.2	241.5	86.3	8.01	4.04	15.1
Avg.	335.5	388.8	246.2	85.8	7.73	4.23	15.0
St. Dev.	8.64	4.07	6.01	2.52	0.26	0.26	0.53
CV (%)	2.58	1.05	2.44	2.93	3.36	6.17	3.55
Judgement *	Good	Good	Good	Good	Acceptable	Acceptable	Acceptable
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	2.72	1.28	1.89	0.79	2.04	2.05	2.66
Judgement *	Good	Good	Good	Good	Good	Good	Good
					Judger	ments	

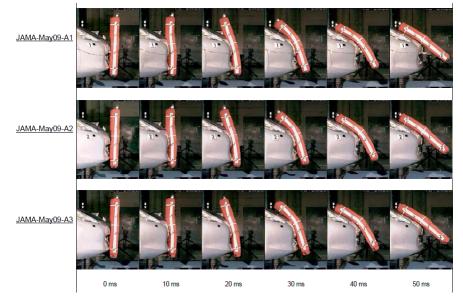
11

Injury assessment items and monitoring items were evaluated.
 I-IARV: Tentative Injury Assessment Reference Values

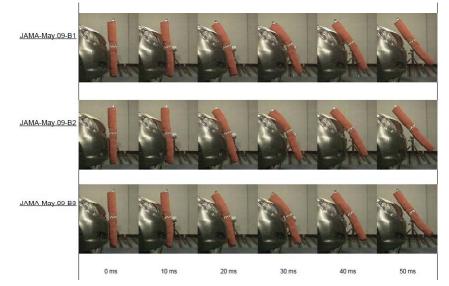
Injury
Assessment
Mc

evaluated. es		Good: < 3%		
		Acceptable: $3\% \le and \le 7\%$		
njury essment tems	Monitoring Items	Marginal: 7% ≤ and < 10%		
		Not Acceptable: > 10%		

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-Apr.09-B1, B2, B3)


Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car


· · · · · · · · · · · · · · · · · · ·							
	Max. values						
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JAMA-Apr.09-B1	203.3	263.1	273.8	226.3	4.94	5.35	16.6
JAMA-Apr.09-B2	223.4	280.8	278.2	226.0	4.91	5.20	16.2
JAMA-Apr.09-B3	198.5	271.7	262.6	218.2	4.63	6.12	16.5
Avg.	208.4	271.9	271.5	223.5	4.83	5.56	16.4
St. Dev.	13.21	8.85	8.00	4.61	0.17	0.50	0.20
CV (%)	6.34	3.26	2.95	2.06	3.54	8.94	1.23
Judgement *	Acceptable	Acceptable	Good	Good	Acceptable	Marginal	Good
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	4.15	2.78	2.52	1.45	1.35	3.91	1.01
Judgement *	Acceptable	Good	Good	Good	Good	Acceptable	Good

* Initial and a second statement in the second s	Judgements				
 Injury assessement items and monitoring items t-IARV: Tentative Injury Assessment Reference 	Guud. > 3%				
	Injury	Monitoring	Marginal: 7% ≤ and < 10%		
	Assessment Items	Items	Not Acceptable: > 10%		

Flex-GTR-prototype JAMA Round Robbing Test Results Kinematics (JAMA-May09-A1, A2, A3)

Flex-GTR-prototype JAMA Round Robbing Test Results Kinematics (JAMA-May.09-B1, B2, B3)

Flex-GTR-prototype JAMA Round Robbing Test Results Maximum Values (JAMA-May.09-A1, A2, A3)

Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Tes

strig. Car	st Rig: Car	
------------	-------------	--

	Max. values						
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MC
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JAMA-May.09-A1	227.4	211.7	131.1	146.8	5.70	6.33	17.4
JAMA-May.09-A2	235.2	224.8	149.2	134.1	5.44	6.76	18.2
JAMA-May.09-A3	227.6	211.6	135.9	146.6	5.81	6.05	17.7
Avg.	230.1	216.0	138.7	142.5	5.65	6.38	17.8
St. Dev.	4.41	7.56	9.36	7.30	0.19	0.36	0.41
CV (%)	1.92	3.50	6.74	5.12	3.36	5.62	2.28
Judgement *	Good	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Good
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	1.39	2.38	2.94	2.29	1.50	2.82	2.03
Judgement *	Good	Good	Good	Good	Good	Good	Good
					Judge	ments	

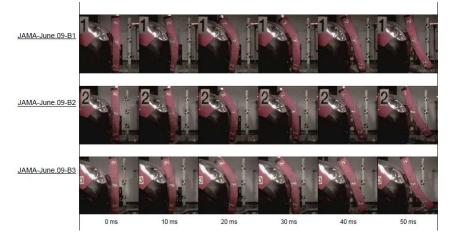
* Injury assessement items and monitoring items were ** t-IARV: Tentative Injury Assessment Reference Valu Ass

Injury sessment Items	Monitoring Items	Marginal: 7% ≤ and < 10% Not Acceptable: > 10%		
		Acceptable: $3\% \le and \le 7\%$		
evaluated. lues		Good: < 3%		

Flex-GTR-prototype JAMA Round Robbing Test Results Maximum Values (JAMA-May.09-B1, B2, B3)

Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car


	Max. values						
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JAMA-May.09-B1	222.7	185.6	189.1	193.0	7.03	4.93	11.8
JAMA-May.09-B2	236.3	212.2	186.9	187.7	6.70	5.15	10.9
JAMA-May.09-B3	243.3	205.8	184.2	164.1	7.73	5.19	12.2
Avg.	234.1	201.2	186.7	181.6	7.13	5.07	11.6
St. Dev.	10.47	13.88	2.45	15.39	0.51	0.15	0.67
CV (%)	4.47	6.90	1.31	8.47	7.19	3.01	5.72
Judgement *	Acceptable	Acceptable	Good	Marginal	Marginal	Good	Acceptable
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	3.29	4.37	0.77	4.84	4.04	1.20	3.33
Judgement *	Acceptable	Acceptable	Good	Acceptable	Acceptable	Good	Acceptable

 Injury assessement items and monitoring items v ** t-IARV: Tentative Injury Assessment Reference 	Judgements Good: < 3%		
enviry renative injury Assessment Reference	values		Acceptable: $3\% \le and \le 7\%$
	Injury Assessment	Monitoring	Marginal: 7% ≤ and < 10%
	Items	Items	Not Acceptable: > 10%

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Kinematics (JAMA-June.09-A1, A2, A3)

Flex-GTR-prototype JAMA Round Robbing Test Results Kinematics (JAMA-June.09-B1, B2, B3)

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-June.09-A1, A2, A3)

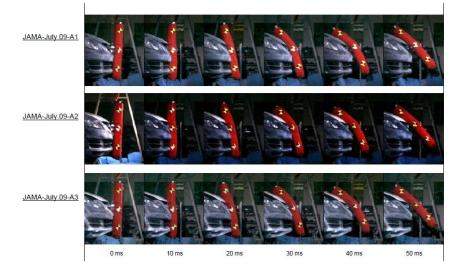
Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car

			. In the second s	Aax. value	s		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCI
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JAMA-June.09-A1	247.1	320.1	274.2	127.1	4.62	5.38	12.4
JAMA-June.09-A2	255.5	330.0	287.3	132.1	4.66	5.45	13.0
JAMA-June.09-A3	259.4	314.4	253.3	127.7	4.84	5.46	14.0
Avg.	254.0	321.5	271.6	129.0	4.70	5.47	13.1
St. Dev.	6.29	7.89	17.15	2.73	0.10	0.06	0.81
CV (%)	2.47	2.46	6.31	2.12	2.13	1.06	6.15
Judgement *	Good	Good	Acceptable	Good	Good	Good	Acceptable
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	1.98	2.48	5.39	0.86	0.79	0.45	4.04
Judgement *	Good	Good	Acceptable	Good	Good	Good	Acceptable
					Judge	ments	
 Injury assessement items and monitoring items were evaluated. ** t-IARV: Tentative Injury Assessment Reference Values 					Good: < 3%		

	Items	Items	Not Acceptable: > 10%
	Injury Assessment	Monitoring	Marginal: 7% ≤ and < 10%
,			Acceptable: 3% ≤ and < 7%
v Assessment Reference	Good: < 3%		

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-June.09-B1, B2, B3)


Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car


		Max. values								
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL			
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)			
JAMA-June.09-B1	295.5	229.9	154.8	73.8	10.98	8.11	24.9			
JAMA-June.09-B2	309.8	242.9	167.6	83.4	10.46	8.25	24.6			
JAMA June.09 B3	317.4	249.7	173.0	83.6	10.97	7.85	24.6			
Avg.	307.6	240.8	165.1	80.3	10.83	8.07	24.7			
St. Dev.	11.12	10.06	9.35	5.60	0.29	0.15	0.17			
CV (%)	3.62	4.18	5.66	6.98	2.66	1.89	0.70			
Judgement *	Acceptable	Acceptable	Acceptable	Acceptable	Good	Good	Good			
t-IARV **	318	318	318	318	12.7	12.7	20			
St.Dev./t-IARV (%)	3.50	3.16	2.94	1.76	2.27	1.20	0.87			
Judgement *	Acceptable	Acceptable	Good	Good	Good	Good	Good			
					Judge	ments				

	Items	Items	Not Acceptable: > 10%
	Injury Assessment	Monitoring	Marginal: 7% \leq and \leq 10%
· · · · · · · · · · · · · · · · · · ·			Acceptable: $3\% \le and \le 7\%$
** t-IARV: Lentative Injury Assessment Reference	Good: < 3%		
* Injury assessement items and monitoring items	Judgements		

Flex-GTR-prototype JAMA Round Robbing Test Results Kinematics (JAMA-July.09-A1, A2, A3)

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Kinematics (JAMA-July.09-B1, B2, B3)

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-July.09-A1, A2, A3)

Repeatability Check for GTR-prototype

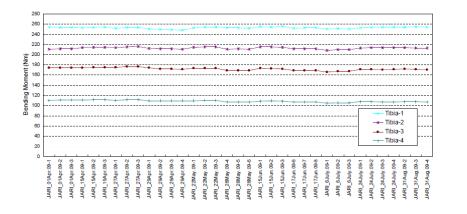
Impactor: Flex-GTR-prototype (SN03) Test Method: Subsystem (Free fright) Test Rig: Car

	Max. values									
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL			
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)			
JAMA-July.09-A1	156.0	156.3	139.0	138.1	5.27	6.98	17.6			
JAMA-July.09-A2	168.8	153.5	136.3	132.1	5.86	5.80	17.0			
JAMA-July.09-A3	158.2	168.6	151.5	142.5	5.32	6.24	16.2			
Avg.	161.0	159.5	142.3	137.6	5.50	6.33	16.9			
St. Dev.	6.84	8.03	8.11	5.22	0.35	0.61	0.70			
CV (%)	4.25	5.04	5.70	3.79	6.30	9.65	4.15			
Judgement *	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Marginal	Acceptable			
t-IARV **	318	318	318	318	12.7	12.7	20			
St.Dev./t-IARV (%)	2.15	2.53	2.55	1.64	2.73	4.81	3.51			
Judgement *	Good	Good	Good	Good	Good	Acceptable	Good			
* Injury assessement items	and monitor	ina items we	re evaluated		Judge					
** t-IARV: Tentative Injury		-				Good: < 3	%			
Acceptable: 3% ≤ and < 7%										
	Injury Assessment Monitoring Marginal: 7% ≤ and < 10%									
	Items Not Acceptable: > 10%									

<u>Flex-GTR-prototype JAMA Round Robbing Test Results</u> Maximum Values (JAMA-July.09-B1, B2, B3)

Repeatability Check for GTR-prototype

Impactor: Flex-GTR-prototype (SN03)	
Test Method: Subsystem (Free fright)	


Test Rig: Car

	Max. values								
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MCL		
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)		
JAMA-July.09-B1	191.7	161.0	179.3	136.4	5.23	4.34	16.2		
JAMA-July.09-B2	193.1	167.7	188.7	156.2	5.96	4.18	16.8		
JAMA-July.09-B3	185.5	159.7	182.6	149.7	5.50	4.59	16.8		
Avg.	190.1	162.8	183.5	147.4	5.57	4.37	16.6		
St. Dev.	4.04	4.29	4.77	10.09	0.40	0.21	0.35		
CV (%)	2.13	2.64	2.60	6.85	7.26	4.77	2.09		
Judgement *	Good	Good	Good	Acceptable	Marginal	Acceptable	Good		
t-IARV **	318	318	318	318	12.7	12.7	20		
St.Dev./t-IARV (%)	1.27	1.35	1.50	3.17	3.18	1.64	1.73		
Judgement *	Good	Good	Good	Acceptable	Acceptable	Good	Good		

<u>Flcx-GTR-prototype Pendulum Test Results During the JAMA Round Robbing Tests</u> Maximum Values, Graph, Tibia

<u>Flex-GTR-prototype Pendulum Test Results During the JAMA Round Robbing Tests</u> Maximum Values, Graph, Knee (ACL, PCL, MCL)

 All
 July 20 Alor 092

 July 20 Alor 092
 J

Flex-GTR-prototype Pendulum Test Results During the JAMA Round Robbing Tests

_				Max. value	5		
	Tibia-1	Tibia-2	Tibia-3	Tibia-4	Knee-ACL	Knee-PCL	Knee-MC
	(Nm)	(Nm)	(Nm)	(Nm)	(mm)	(mm)	(mm)
JARI_01Apr.09-1	254.1	210.9	173.8	110.0	8.20	5.25	22.5
JARI_01Apr.09-2	253.8	211.6	173.9	110.7	8.61	4.87	22.5
JARI_01Apr.09-3	253.7	211.7	174.1	111.0	8.57	4.90	22.5
JARI_15Apr.09-1	252.8	213.8	173.7	110.9	8.74	4.73	22.5
JARI 15Apr.09-2	253.6	215.1	174.3	111.6	8.55	4.93	22.5
JARI 15Apr.09-3	253.9	215.1	174.3	111.8	8.60	4.88	22.5
JARI 27Apr.09-1	251.9	213.7	174.4	110.3	8.32	4.97	22.5
JARI 27Apr.09-2	253.6	215.8	175.8	111.6	8.51	4.88	22.6
JARI 27Apr.09-3	253.7	216.2	175.9	111.9	8.37	5.11	22.6
JARI_29Apr.09-1	250.7	212.6	173.4	109.5	7.72	5.54	22.4
JARI_29Apr.09-2	249.6	211.5	171.6	109.2	7.70	5.53	22.3
JARI_29Apr.09-3	248.8	211.3	171.1	109.1	7.86	5.43	22.3
JARI 29Apr.09-4	248.1	211.2	171.0	109.0	8.27	4.93	22.3
JARI 22May.09-1	253.0	214.8	172.8	109.6	8.57	4.71	22.4
JARI 22May.09-2	254.5	215.8	173.4	110.2	8.45	4.89	22.4
JARI 22May.09-3	254.0	215.5	173.0	110.0	8.46	4.88	22.4
JARI 28May.09-4	252.9	211.3	168.7	106.8	8.56	4.78	22.5
JARI 28May.09-5	252.4	211.4	168.3	107.3	8.49	4.86	22.5
JARI 28May.09-6	251.6	211.1	168.1	107.0	8.55	4.79	22.6
JARI 15Jun.09-1	254.8	215.5	172.7	108.7	8.52	4.80	22.5
IARI_15Jun.09-2	254.4	215.4	172.4	109.2	8.54	4.81	22.6
JARI 15Jun.09-3	255.5	214.8	171.8	108.6	8.56	4.79	22.6
JARI 17Jun.09-6	252.1	211.5	168.3	106.8	8.67	4.66	22.5
JARI 17Jun.09-7	252.4	211.6	168.4	106.6	8.57	4.77	22.6
JARI_17Jun.09-8	252.5	212.0	168.7	106.8	8.62	4.73	22.6
JARI_6July.09-1	250.0	208.8	165.7	104.9	8.43	4.82	22.5
JARI_6July.09-2	250.9	209.8	166.8	105.4	8.47	4.86	22.6
JARI 6July.09-3	250.5	210.1	166.8	105.6	8.65	4.68	22.6
JARI 24July.09-1	252.8	213.1	170.7	107.5	8.25	4.93	22.5
JARI 24July.09-2	253.7	214.0	170.9	107.9	8.64	4.70	22.6
JARI 24July.09-3	254.3	213.9	170.3	107.2	8.66	4.74	22.6
JARI 24July.09-4	253.9	214.1	170.6	107.1	8.64	4.78	22.6
JARI 31Aug.09-2	254.4	214.1	171.4	107.9	8.58	4.77	22.6
JARI_31Aug.09-3	254.7	213.5	170.7	107.5	0.00	4.70	22.0
JARI_31Aug.09-4	254.6	212.9	169.9	107.0	8.61	4.75	22.6
Avg.	252.8	213.0	171.4	108.6	8.46	4.89	22.5
St. Dev.	1.80	1.97	2.65	1.94	0.25	0.22	0.09
CV (%)	0.71	0.92	1.54	1.79	2.96	4.52	0.40
Judgement *	Good	Good	Good	Good	Good	Acceptable	Good
t-IARV **	318	318	318	318	12.7	12.7	20
St.Dev./t-IARV (%)	0.57	0.62	0.83	0.61	1.97	1.74	0.45
Judgement*	Good	Good	Good	Good	Good	Good	Good

22.5	
0.09	* Injury assessement items and monitoring items were evaluated
0.40	** t-IARV: Tentative Injury Assessment Reference Values

s were evaluated. ce Values		Good: < 3%
		Acceptable: 3% ≤ and < 79
injury	Monitoring	Marginal: 7% ≤ and < 10%
Assessment Items	Items	Not Acceptable: > 10%

During Car Test

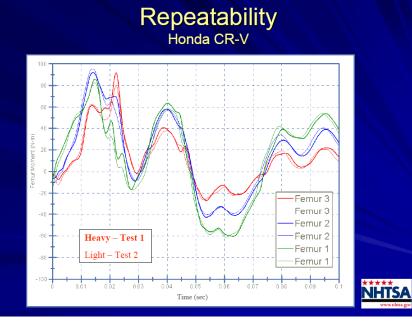
CV	Injury Assessment Items				Monitoring Items					
	Good	Acceptable Marginal			Good	Acceptable	Marginal			
JAMA-April.09-A	4	1	0		0	2	0			
JAMA-April.09-B	3	2	0		0	1	1			
JAMA-May.09-A	2	3	0		0	2	0			
JAMA-May.09-B	1	3	1		1	0	1			
JAMA-June.09-A	3	2	0		2	0	0			
JAMA-June.09-B	1	4	0		2	0	0			
JAMA-July.09-A	0	5	0		0	1	1			
JAMA-July.09-B	4	1	0		0	1	1			
total	18	21	1		5	7	4			
	45%	53%	3%		31%	44%	25%			

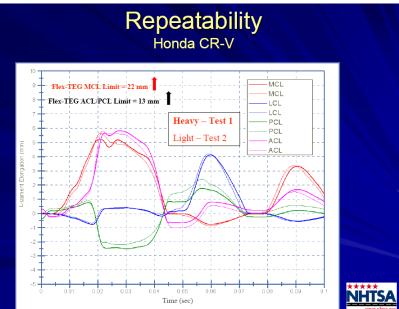
St.Dev./t-IARV	Injury	Assessment	Items	Мо	onitoring Ite	ms	
	Good	Acceptable Marginal		Good	Acceptable	Marginal	
JAMA-April.09-A	5	0	0	2	0	0	
JAMA-April.09-B	4	1	0	1	1	0	
JAMA-May.09-A	5	0	0	2	0	0	
JAMA-May.09-B	1	4	0	1	1	0	
JAMA-June.09-A	3	2	0	2	0	0	
JAMA-June.09-B	3	2	0	2	0	0	
JAMA-July.09-A	5	0	0	1	1	0	
JAMA-July.09-B	4	1	0	1	1	0	
total	30	10	0	12	4	0	
	75%	25%	0%	75%	25%	0%	

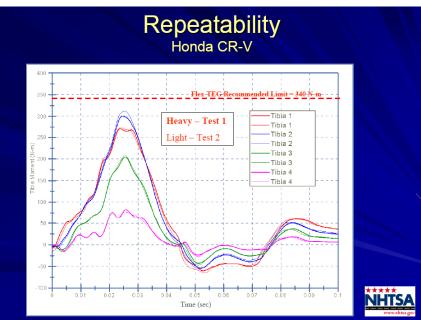
During Pendulum Test

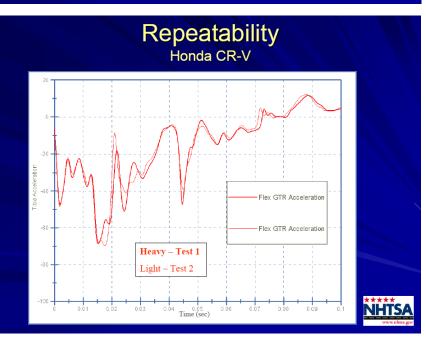
CV	Injury Assessment Items				Monitoring Items				
	Good Acceptable Marginal				Good	Acceptable	Marginal		
JAMA from April.09-A to July.09-B	5	0	0		1	1	0		
total	5	0	0		1	1	0		
	100% 0% 0%				50%	50%	0%		

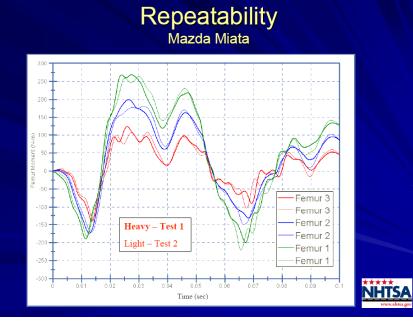
St.Dev./t-IARV	Injury Assessment Items			Monitoring Items				
	Good Acceptable Marginal			Good	Acceptable	Marginal		
JAMA from April.09-A to July.09-B	5	0	0	2	0	0		
total	5	0	0	2	0	0		
	100%	0%	0%	100%	0%	0%		

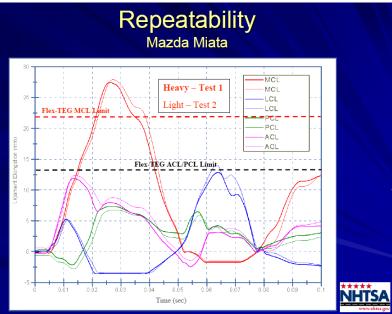

Test Matrix

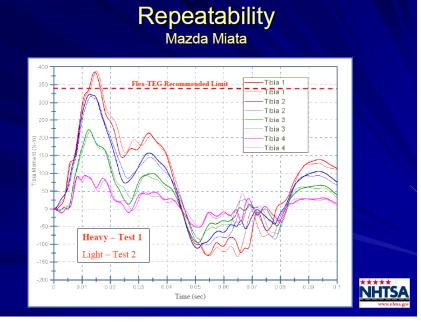

Selection Criteria

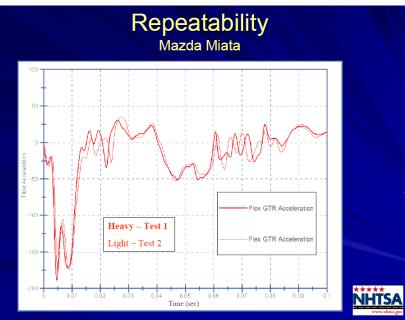

 Vehicle location did reasonably well in TRL tests (Mallory, ESV 2009 & more recent testing)

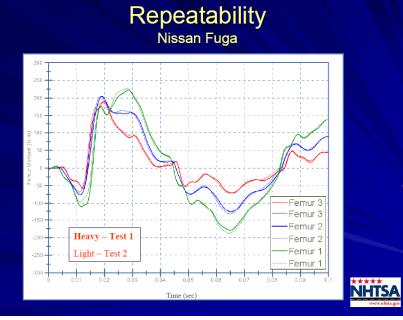

Vehicle	Tibia Acceleration (GTR: 170 g)	Bending Angle (GTR: 19 deg)	Shear Displacement (GTR: 6 mm)	
2005 Honda CR-V	Pass	Pass	Pass	
2002 Mazda Miata	Pass	Pass	Pass	
2006 Infiniti M35 (with Nissan Fuga bumper)	Pass	Pass	Pass	
2006 Volkswagen Passat	Pass	Fail	Pass	
2001 Honda Civic	Fail (marginal)	Fail (marginal)	Fail (marginal)	

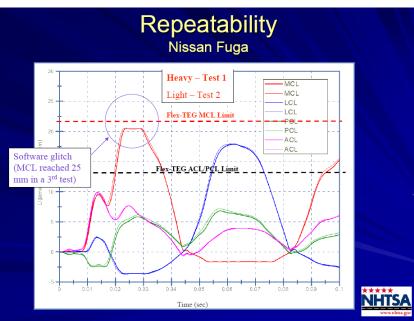


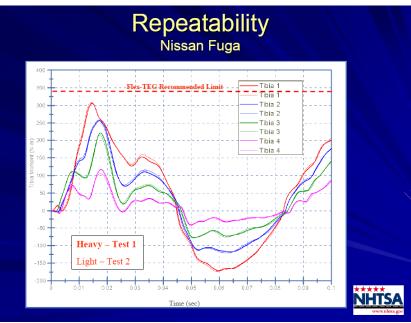


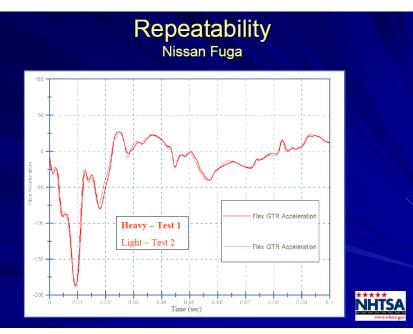


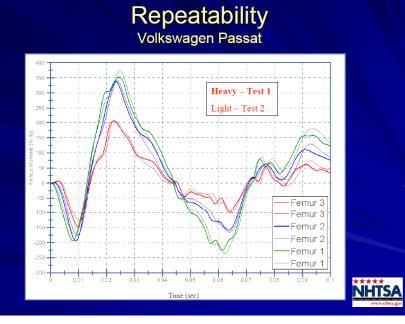


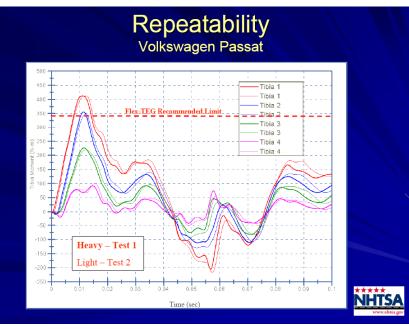


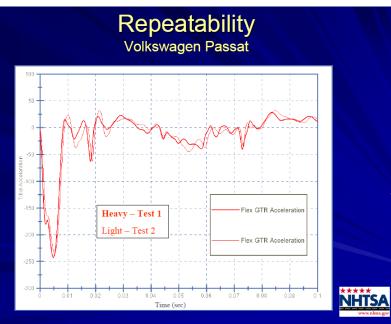


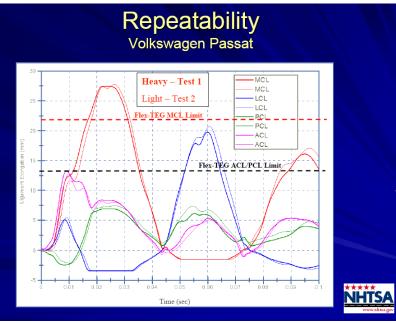


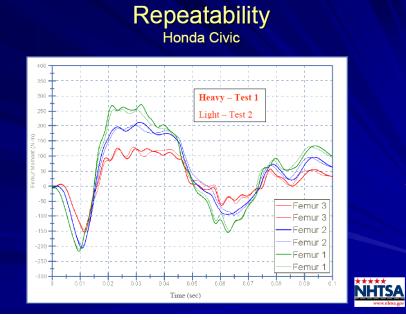


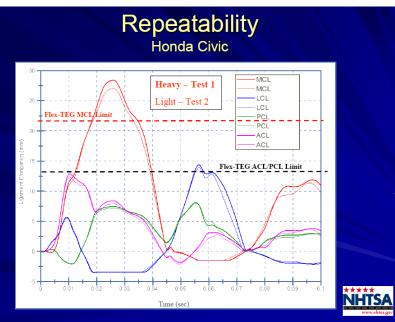


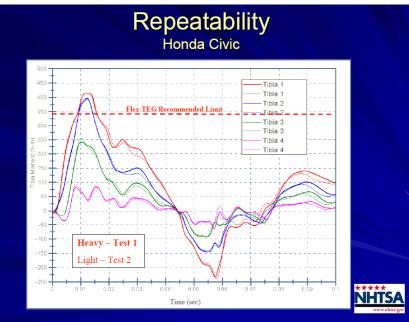


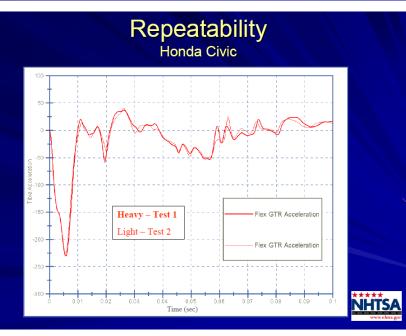












Summary

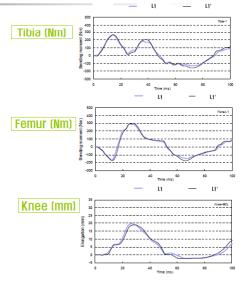
Very good repeatability

- In two repeat tests, center impact, 5 vehicles
- Improved durability
 - But we have not tested vehicles that were poor performers in TRL legform tests
- SLICE is functional & improvement over conventional DAS
 - But does have some bugs that need to be worked out

TEG-113 Introduction of Test Vehicle and Test Method

- Test Vehicle
- Vehicle meets the criteria of the TRL-LFI to test according to existing legislation
- Vehicle was rated completely green in the TRL-LFI to tests of Euro-NCAP
- Vehicle is considered to be pedestrian friendly in this area
- Test Method

Impactor type	Flex-PLi-GTR Prototype
Impact velocity	11.1±0.2m/s
Impact zone	EEVC WG17 LFI by EURO NCAP (Green zone)
Impact point	Same point 2 Same vehicles
Impact times	3 Impact per 1 Vehicle
Impact Height	75mm (From ground level)


Repeatability for Flex-PLi Prototype

MLTM Safety Authority

MITM

		TIBIA 1 (Nm)	TIBIA 2 (Nm)	TIBIA 3 (Nm)	TIBIA 4 (Nm)	MCL (mm)	ACL (mm)	PCL (mm)
	L1	261.4	234.9	194.1	150.5	19.7	8.5	10.1
	L1'	266.7	237	204.7	156.9	18.9	8.9	7.
L1	MEAN	264.05	235.95	199.4	153.7	19.3	8.7	8.8
	ST.DEV	3.7477	1.4849	7.4953	4.5255	0.5657	0.2828	1.767
	C.V	0.0142	0.0063	0.0376	0.0294	0.0293	0.0325	0.199
	C.V(%)	1.42	0.63	3.76	2.94	2.93	3.25	19.9
		TIBIA 1 (Nm)	TIBIA 2 (Nm)	TIBIA 3 (Nm)	TIBIA 4 (Nm)	MCL (mm)	ACL (mm)	PCL (mm)
	L2	253.6	242.7	188.1	175.9	18.4	7.8	6.
L2	L2'	239	228.8	187.9	170.2	19.4	7.5	
	MEAN	246.3	235.75	188	173.05	18.9	7.65	7.
	ST.DEV	10.324	9.8288	0.1414	4.0305	0.7071	0.2121	1.131
	C.V	0.0419	0.0417	0.0008	0.0233	0.0374	0.0277	0.157
	C-V(%)	4.19	4.17	0.08	2.33	3.74	2.77	15.7
		TIBIA 1 (Nm)	TIBIA 2 (Nm)	TIBIA 3 (Nm)	TIBIA 4 (Nm)	MCL (mm)	ACL (mm)	PCL (mm)
	L3	282.6	256.4	219.4	159.7	20.7	8.4	5.
L3	L3'	285.4	251.1	214.3	153.4	20.2	8.1	6.
	MEAN	284	253.75	216.85	156-55	20.45	8.25	
	ST.DEV	1.9799	3.7477	3.6062	4.4548	0.3536	0.2121	0.424
	C.V	0.007	0.0148	0.0166	0.0285	0.0173	0.0257	0.070
ľ	C.V(%)	0.70	1.48	1.66	2.85	1.73	2.57	7.0

Popostability for Eloy_DLi Drototypo

3

Conclusion

KATRI have conducted the round robin test for Flex-PLi-GTR and as the result,

Comparison between EEVC WG17 LFI and Flex-PLi-GTR for same vehicle

- ✓ Vehicle meets the criteria of EEVC WG17 LFI is also to meet Flex-PLi-GTR
- ✓ In spite of meeting regulation, The margin of Flex-PLi is shorter than EEVC WG17 LFI
- This result should not apply for every vehicle, it is only applicable to our tested vehicle

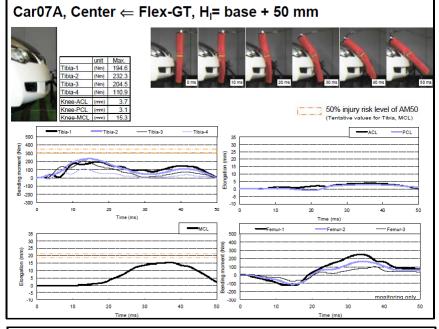
Repeatability

- Almost Good(62%) and Acceptable(24%) but some happened not acceptable level(9%)
- Durability and Usability
 - No serious issues on the durability and usability
- Some improvements are needed
 - ✓ As for Design and Durability : No sharp edges and No fracture especially zipper
 - ✓ As for Usability : More convenient and automatic control program
 - As for stability : Better data download and electrical ground connection
 - * More consideration is necessary to unexpected and without-control rebound phenomenon

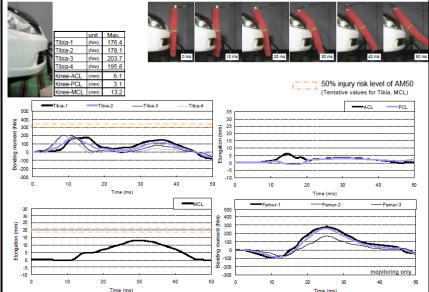
Outline

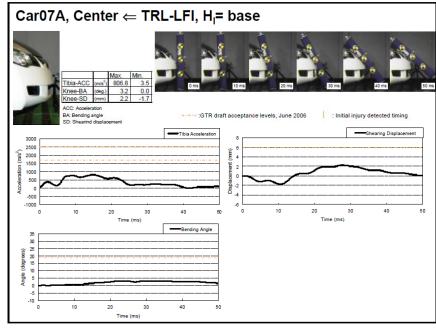
Biofidelity
 Performance/Injury Criteria
 Benefit
 Durability
 Reproducibility and Repeatal
 Vehicle Countermeasures

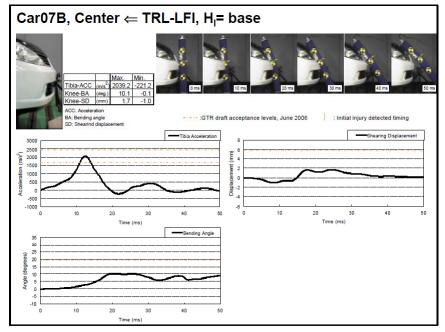
6. Vehicle Countermeasures

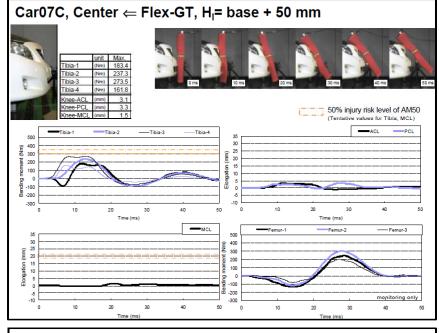

- List of Relevant TEG Documents -

Doc. #	Affiliation	Version	Summary
TEG-035	JAMA	Flex-GT TRL-LFI	 Car test (3 cars) using Flex-GT and TRL-LFI 1 location for 2 cars, 2 locations for 1 car Results Car A : Flex-GT MCL elongation closest to threshold Car B : TRL-LFI tibia accel. above gtr9 threshold Car C center : Flex-GT tibia moment closest to threshold Car C right : Flex-GT tibia moment above threshold
TEG-036	BASt	Flex-GT	 Car test (2 cars) using Flex-G and Flex-GT Comparison with Euro NCAP results Results Good Euro NCAP test results can be confirmed by Flex-GTα test results
TEG-091	OPEL	Flex-GTR	 Flex-GTR car test (1 car) Comparison with Euro NCAP test results Results Flex-GTR yielded more conservative evaluation results relative to the Euro NCAP leg test for one particular car tested

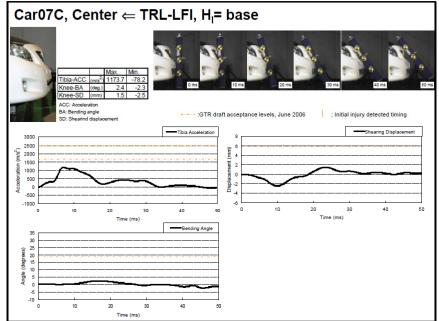

6. Vehicle Countermeasures

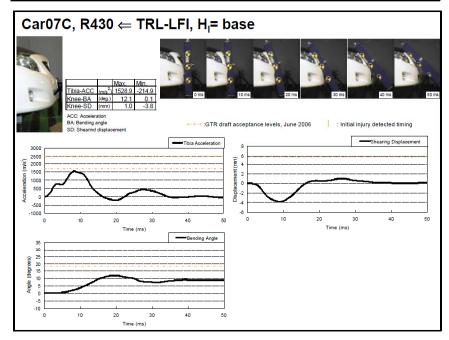

- List of Relevant TEG Documents -

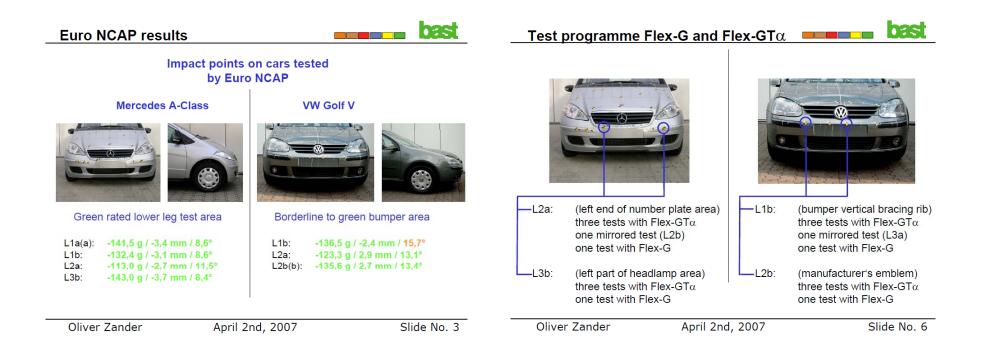

Doc. #	Affiliation	Version	Summary
TEG-112	NHTSA	Flex-GTR	 Flex-GTR car test (2005 Honda CR-V, 2002 Mazda Miata, 2006 Infiniti M35, 2006 VW Passat, 2001 Honda Civic) Pass/fail comparison between TRL-LFI and Flex-GTR Results Same pass/fail distribution for TRL legform and Flex-GTR with 2 out of 5 cars tested More conservative pass/fail results for Flex-GTR with 3 out of 5 cars tested No car resulted in more conservative TRL legform pass/fail evaluation results
TEG-113	KATRI	Flex-GTR	 Flex-GTR car test (1 car) Comparison between TRL-LFI and Flex-PLI test results Results The particular car tested that meets the criteria of TRL legform also met those of Flex-GTR The margin for Flex-GTR was smaller than that for TRL legform for one particular car tested

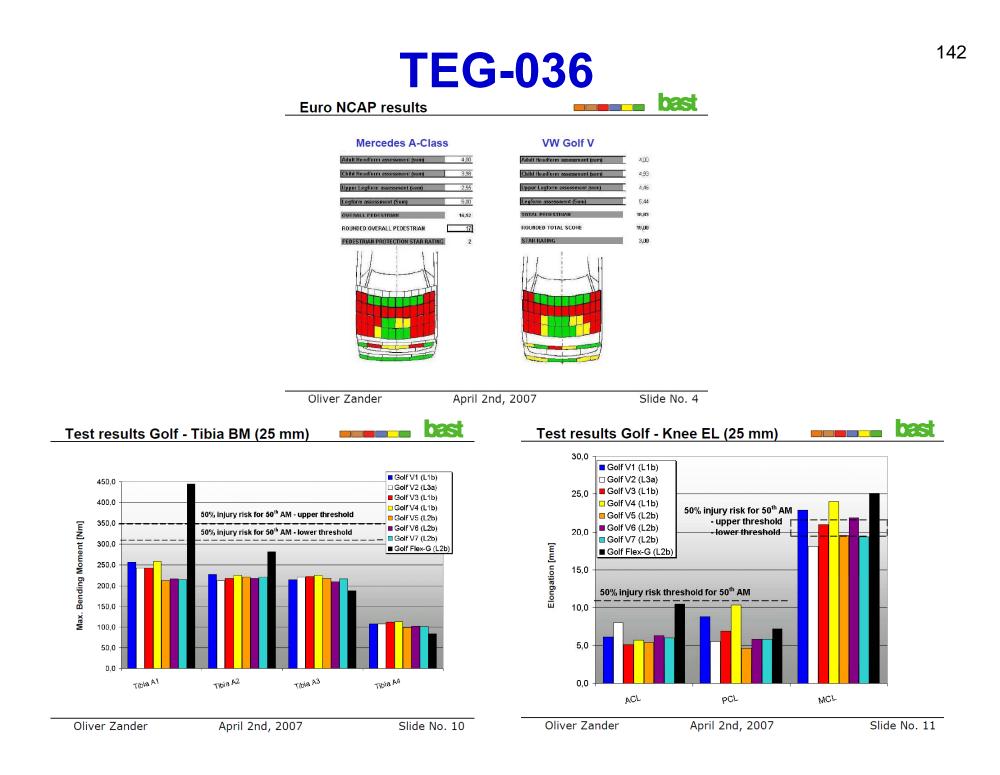


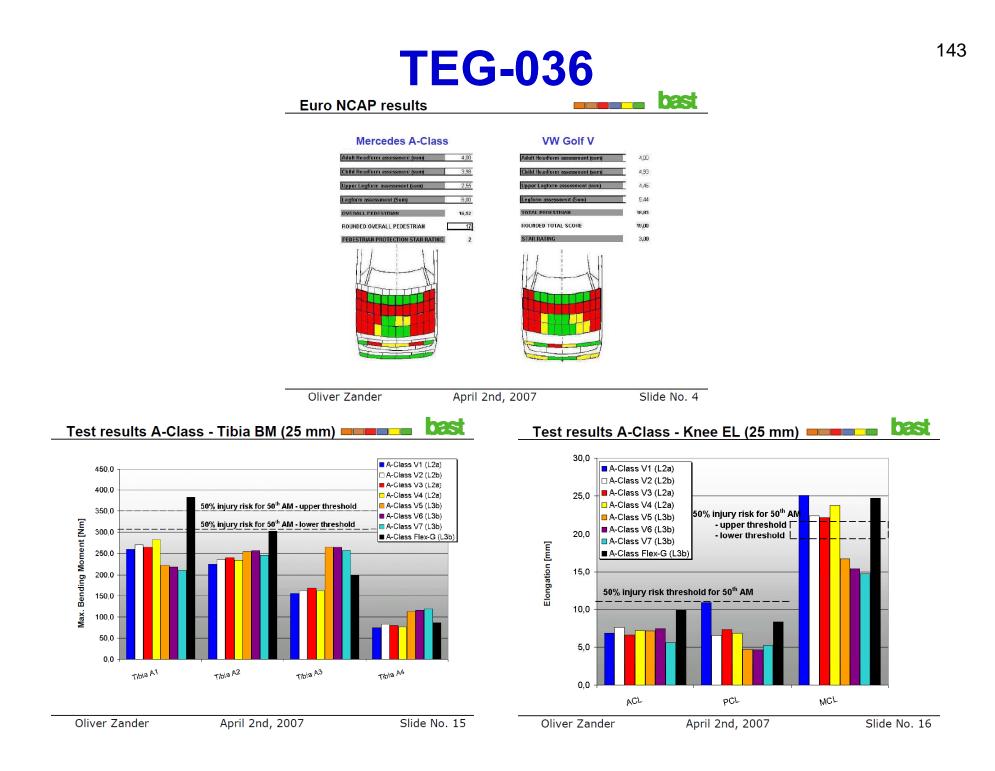

Car07B, Center ⇐ Flex-GT, H_I= base + 50 mm







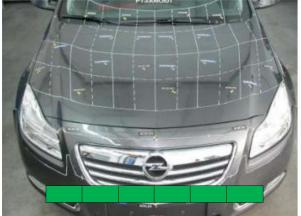




Results and open issues

<u>General</u>

- Flex-GT α robust enough to be tested at regular impact speed
- good handling and usability under mechanical aspects
- no expendables (foam, ligaments) needed


Comparison EEVC WG 17 PLI and Flex-GTα test results

 good test results according to Euro NCAP can be confirmed by Flex-GTαtests (taking into account the currently proposed tentative injury thresholds)

Influence of impactor impact height

- clearly depends on the car impact height, the shape of the impact point environment and the corresponding legform measuring point
- significantly smaller MCL loads with an increased impact height

FlexPLI Technical Evaluation Group, 8th Meeting, Cologne, May 19, 2009 Lower Leg Performance with TRL LFI (Reference)

criteria of the LFI to bumper test according to existing legislation.
Vehicle was rated completely green in the LFI to bumper tests of Euro NCAP.
Vehicle is considered to be

Vehicle meets the

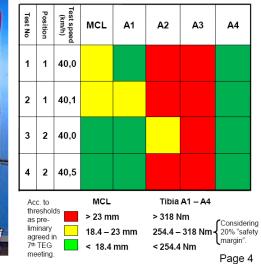
considered to be "pedestrian friendly" in this area.

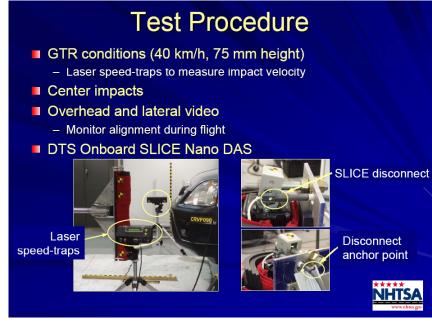
Thomas Kinsky, GM Europe Engineering / Adam Opel GmbH

Page 2

22

OPEL


FlexPLI Technical Evaluation Group, 8th Meeting, Cologne, May 19, 2009 Lower Leg Performance with FlexPLI Version GTR – Results



 Terror

 In

 In
 <

Test Matrix

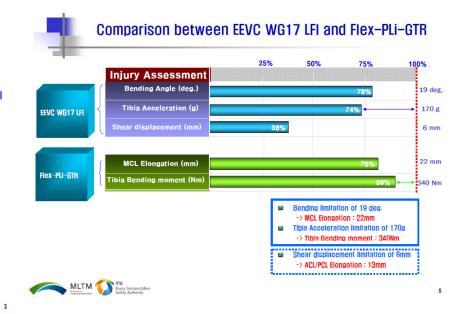
Selection Criteria

 Vehicle location did reasonably well in TRL tests (Mallory, ESV 2009 & more recent testing)

Vehicle	Tibia Acceleration (GTR: 170 g)	Bending Angle (GTR: 19 deg)	Shear Displacement (GTR: 6 mm)
2005 Honda CR-V	Pass	Pass	Pass
2002 Mazda Miata	Pass	Pass	Pass
2006 Infiniti M35 (with Nissan Fuga bumper)	Pass	Pass	Pass
2006 Volkswagen Passat	Pass	Fail	Pass
2001 Honda Civic	Fail (marginal)	Fail (marginal)	Fail (marginal)

Summary

	TRL Legform			Flex-GTR Legform		
	Tibia Acceleration	Bending Angle	Shear Displacement	Tibia Bending Moment	MCL Elongation	ACL/PCL Elongation
Limit (GTR value for TRL or 9 th Flex-TEG recommendation for Flex- GTR)	170 g	19 deg	бтт	340 N-m	22 mm	13 mm
2005 Honda CR-V	Pass	Pass	Pass	Pass	Pass	Pass
2002 Mazda Miata	Pass	Pass	Pass	Fail	Fail	Pass
2006 Infiniti M35 with Nissan Fuga bumper	Pass	Pass	Pass	Pass	Fail	Pass
2006 Volkswagen Passat	Pass	Fail	Pass	Fail	Fail	Fail (marginal)
2001 Honda Civic	Fail (marginal)	Fail (marginal)	Fail (marginal)	Fail	Fail	Pass (marginal)



Introduction of Test Vehicle and Test Method

Test Vehicle

- Vehicle meets the criteria of the TRL-LFI to test according to existing legislation
- Vehicle was rated completely green in the TRL-LFI to tests of Euro-NCAP
- Vehicle is considered to be pedestrian friendly in this area

Impactor type	Flex-PLi-GTR Prototype
Impact velocity	11.1±0.2m/s
Impact zone	EEVC WG17 LFI by EURO NCAP (Green zone)
Impact point	Same point 2 Same vehicles
Impact times	3 Impact per 1 Vehicle
Impact Height	75mm (From ground level)

Conclusion

KATRI have conducted the round robin test for Flex-PLi-GTR and as the result,

- Comparison between EEVC WG17 LFI and Flex-PLi-GTR for same vehicle
 - ✓ Vehicle meets the criteria of EEVC WG17 LFI is also to meet Flex-PLi-GTR
 - ✓ In spite of meeting regulation, The margin of Flex-PLi is shorter than EEVC WG17 LFI
 - This result should not apply for every vehicle, it is only applicable to our tested vehicle.

Repeatability

- Almost Good(62%) and Acceptable(24%) but some happened not acceptable level(9%)
- Durability and Usability
 - No serious issues on the durability and usability
- Some improvements are needed
 - As for Design and Durability : No sharp edges and No fracture especially zipper
 - As for Usability : More convenient and automatic control program
 - As for stability : Better data download and electrical ground connection
 - * More consideration is necessary to unexpected and without-control rebound phenomenon

8

