# NERC

## **Security Integration**

Integrating Security with Engineering Practices

Ryan D. Quint, PhD, PE Director, Engineering and Security Integration North American Electric Reliability Corporation U.N. 19<sup>th</sup> Session of Group of Experts on Cleaner Electricity Systems October 2023



**Security Integration:** The integration of cyber and physical security aspects into conventional planning, design, and operations engineering practices.

- Can we *plan* a grid more resilient to cyber and physical attack?
- Can we *design* a grid with security as a critical consideration up front rather than at the end?
- Can we operate the grid in a way that can easily identify, detect, and respond to security incidents?
- Can we *restore* the grid effectively following any compromise?
- No more "bolt on" security measures integrate them up front



### Historically...





[Source: National Review]









### **NERC Security Integration Strategy**



#### **Guidance and Industry Support through Collaboration**

Internal: E-ISAC / RSTC / Technical Sub-Groups External: Industry Forums / Stakeholder Engagements / Federal and Private Partners



### Foundational Documents of Security Integration





### Cyber-Informed Transmission Planning

Roadmap for Integrating Cyber Security into Transmission Planning Activities

May 2023





### Historical Planning-Design-Security Relationship





### Cyber-Informed Transmission Planning Framework





- Leverage multi-value projects that help reduce the number *critical* facilities on the grid
  - Critical = those facilities that could result in instability, uncontrolled separation, or cascading outages
  - Challenges with confidentiality across regulatory spectrum
- Combination of protecting the "crown jewels" and eliminating their criticality in the first place
- Requires concerted "cyber-informed planning" rather than focusing solely on environmental contingencies in the planning horizon



- Scaling of attack surface
  - More distributed assets on bulk power grid
  - Internet-connected assets on the distribution system
- Decentralized control
  - Remotely accessibility and controlled, unmanned facilities by operator, contractors, equipment manufacturers, etc.
- Predominately power electronic-based response (room for risk)
- Need coordinated effort to secure resources from cyber attack
  - Equipment standards (IEEE, IEC, etc.) and operational security standards















- Differentiate security by design for new systems versus managing security risk for existing systems
  - Conflict of new security controls, tools, and practices versus complexity and rigidity of existing systems
- Inherent risks moving from serial-based systems on private networks to IP-based protocols with new technologies
  - Virtualization, cloud computing, IoT devices, emerging technologies
- Growing security vulnerabilities requires both IT and OT resources – from monitoring to mitigation







### Notable Security Concerns from an Engineering Perspective



- Internet of Things
- Smart thermostats
  Microgrids
- Electric vehicles
- Energy storage and DERs

**Building management** 

- Virtual power plants and distributed energy resource (DER) aggregators
- Growth of large power consumption loads – both aggregate and individual
  - Aggregate impact of electric vehicles
  - Individual impact of data centers and crypto mining facilities
- Lack of standards (equipment or performance) across the board







[Source: Electrive





- Rapidly increasing penetration of inverter-based resources
- Growth of distributed energy resources (DERs)
- Introduction of DER Aggregators and virtual power plants
- Large load interconnections data centers, crypto mining, etc.
- Rise of electric vehicles
- Continued connectivity of end-use loads to Internet







### Securely Enabling Emerging Technologies



- Wide range of emerging technologies
  - Virtualization
  - Cloud computing
  - Zero trust network access
  - Artificial intelligence
  - Grid edge technology

- 5G communications
- Blockchain
- Mobile resources
- Virtual power plants
- Quantum computing



[Source: QAD]

- Present boundary-spanning risks span multiple organizations and segments of the energy sector
- Require coordinated efforts to fully leverage benefits yet mitigate risks
- Some we will have ability to "manage" the emergence; others we will be driven by external factors



### Securely Leveraging Cloud Technology



- Redundancy and reliability of data
- Remote vendor support and services
- Increased resilience and reduced costs
- Operational concerns
  - Availability and reliability
  - Communications links
- Potential risks and challenges
  - Compliance audits of cloud service providers
  - Layered complexity of cloud service offerings (understanding dependencies)
  - Roles and responsibilities of provider versus customer
  - Ensuring sufficient security controls in the overlay
- Great for offline applications and services (e.g., system studies)
- Technology readiness and maturity for real-time operational critical infrastructure





### **Existing and Future OT Security Workforce Development**

- Need to upskill and train existing workforce
- Need blended security/engineering curricula in academia ("cyber engineering)
- Need workforce expertise in:
  - OT network security, not just IT expertise
  - Utility experience and understanding of engineering practices
  - Blended cybersecurity and engineering background
  - Protocols, network architectures, tools, engineering needs
- Covers the full spectrum generation, transmission, distribution; system operators, utilities, regulators, policymakers, government agencies
- Need range of experience levels; build a strong bench







- <u>NERC Security Integration Strategy</u>
- <u>ERO Enterprise Cyber-Informed Transmission Planning Paper</u>
- IEEE Technical Report 105 on Security Integration
- INL Cyber-Informed Engineering (CIE)
- <u>Consequence-Driven, Cyber-Informed Engineering</u>
- ISA/IEC 62443 Series of Standards
- <u>NIST SP 800-82 Rev. 3</u>



# **Questions and Answers**



#### Ryan D. Quint, PhD, PE

Director, Engineering and Security Integration <a href="mailto:ryan.quint@nerc.net">ryan.quint@nerc.net</a>