Development of SDG 7 Road Map for Armenia

Vitaly Bekker, consultant UNECE

Outline

- How to plan for Sustainable Development Goal 7?
- Background of SDG 7 roadmap development
- What is an SDG 7 roadmap and how it helps?
- NEXSTEP methodology
- Anticipated results
- Developing SDG 7 roadmap using NEXSTEP
- Contents of a roadmap

Global framework for SDG 7

GOAL

TARGETS

INDICATORS

7.1 ensure **universal** access to affordable, reliable and modern energy services

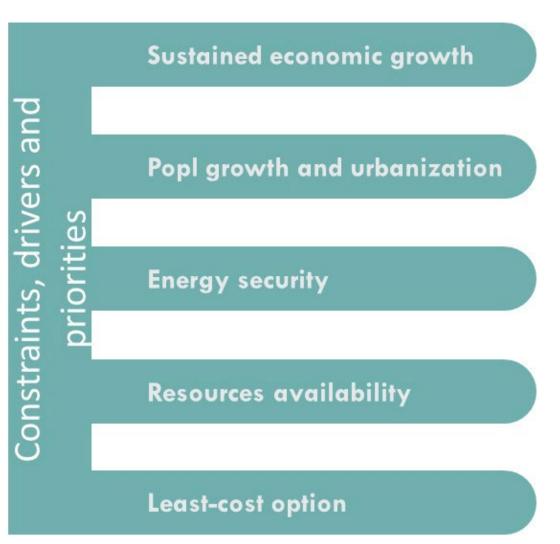
7.2 increase **substantially** the share of renewable energy in the global energy mix

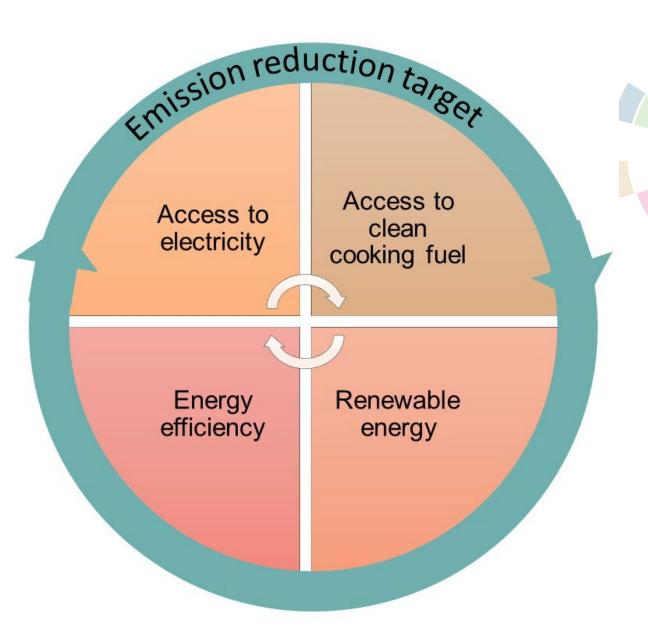
Proportion of population with access to **electricity**

Proportion of population with primary reliance on **clean fuels** and technology

Renewable energy share in the total **final energy consumption**

7.3 **double** the **global** rate of improvement in energy efficiency

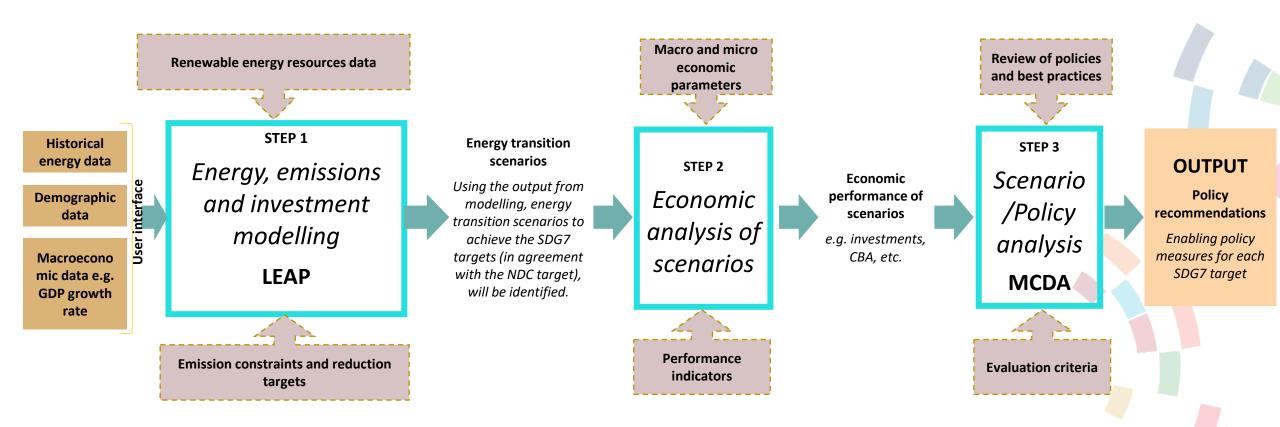

Energy **intensity** measured in terms of **primary energy and GDP**



National Expert SDG Tool for Energy Planning

energy transition

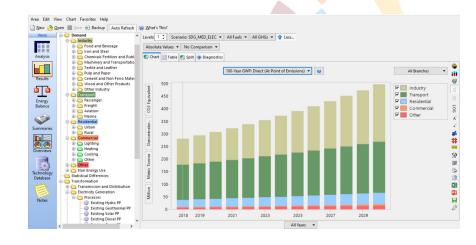
National Expert SDG Tool for Energy Planning (NEXSTEP)



An integrated tool to assist policymakers make informed policy decisions that would help achieve sustainable energy transition.

NEXSTEP methodology

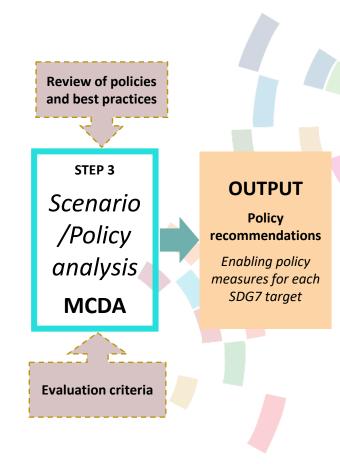
The unique feature of this methodology is the backcasting approach for energy and emissions modelling which is important for the case of SDG7 planning.



Methodology – Component 1

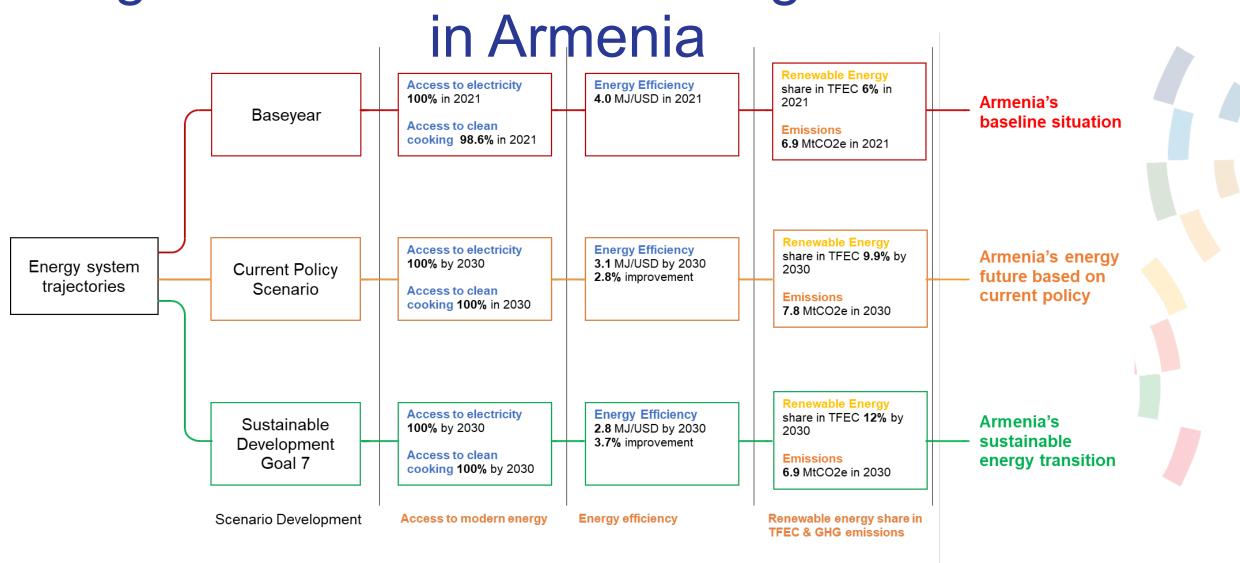
- Modelling of energy and emissions is undertaken using Low Emissions Analysis Platform (LEAP)
- Helps to develop a number of scenarios
 - Using various demographic and macro-economic data and information
- The Least Cost Optimization method is used to calculate the optimal expansion and dispatch of the electric power system

- Economic analysis involves
 - Estimating the cost of electricity supply plus local generation (if any)
 - Identify the cheapest option of electricity generation, E.g.
 - Fuel switching
 - Contracting through PPA, RE Auction, etc.
 - Helps make a decision on future power supply options
 - Assess the potential for increasing share or RE in power



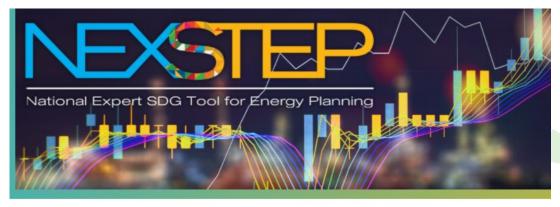
Methodology – Component 3

- Multi-Criteria Decision Analysis (MCDA) is a popular tool in the public and private sector to help in making a policy decision
- It enables compare and contrast various policies and scenarios using a set of defined indicators
- Ideally this is done in a stakeholder consultation workshop
 - Assessing criteria should represent a wide range of stakeholders
 - Helps to avoid any bias
 - Weights are chosen in consensus


Expected output

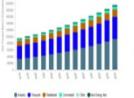
- Energy demand and supply scenarios BAU, CPS, SDG and ambitious scenarios.
- Technology identification and prioritisation for each scenario,
- Policy options to achieve the targets of SDG7 and NDC,
- Investment estimation and cost-benefit analysis for each scenario;
- Marginal abatement cost curve (MACC),
- Levelised cost of Electricity (LCOE)

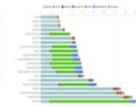
Progress towards SDG 7 Targets for 2030



NEXSTEP online portal

- Data from LEAP are extracted and uploaded on to the portal
- Can be accessed from anywhere
- Data and graphs can be downloaded
- Policy recommendations can be viewed
- Customised reports can be generated




identify the economically ontions/interventions

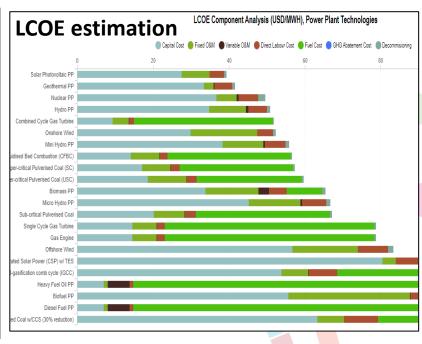
for implementation in the

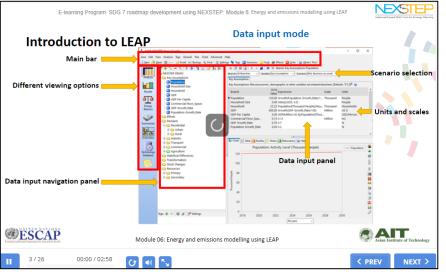
Technology Database

Environmental impacts of different technologies

http://www.ini.com/chine	0.0	
hoph cities of		
Mariamona Eripeira		
Samp distribution of the		
National States		
November		
DESTRUMENTS.	*	
berings (see fil.)		
in transfer two		8
Service P		
pomples		
Accessor.		

# 100 Hou	4				
-	2005/240				
	X come				
200 m	- 12		100		
77					
	attrop to	70.0	9.00	966	
	- proposition	- 100	+40	-	
(Married)	10000146	80.0	460	994	
	*****	-94	WW.	100	
-	101000000	9.9	+44	100	
-	-	41	. 149	-14	
-	1009101	901	610	100	
	TOWNS.	Acc	411	-14	
-	AND STATE	200	610	100	
	departs.	9.0	9.60	110	
_	40.00	40	1100	100	





NEXSTEP – capacity building

Online training module

■ NOSIEP @PSCAP								
	Home / Technology Database	Energy appliances database						
Category	Technology Database							
Energy Efficiency	I≣ ▼ select/deselect parameters							
Technology								
Air Conditioning (Window)	Technology \$				Annual Operating Cost (Cost of electricity) (\$/year)			
echnology Type								
Variable Speed Compressor	Air Conditioning (Window)	Variable Speed Compressor	Medium					
Efficiency Rating	Air Conditioning (Window)	Fixed/Single Speed Compressor	Medium	1	96.62			
apacity/Size (Tons)	Air Conditioning (Window)	Fixed/Single Speed Compressor	High	1	89.49			
	Air Conditioning (Window)	Variable Speed Compressor	Medium	1	68.36			
Iominal Power Consumption (Watts)	Air Conditioning (Window)	Variable Speed Compressor	Hgh	1	65.25			
overage Number of hours used per day (h/day)	Air Conditioning (Window)	Fixed/Single Speed Compressor	Medium	1.5	133.41			
8	Air Conditioning (Window)	Fixed/Single Speed Compressor	High	1.5	121.23			
overage number of days used in a year days/year)	Air Conditioning (Window)	Variable Speed Compressor	Medium	1.5	105.65			
200	Air Conditioning (Window)	Variable Speed Compressor	Hgh	1.5	103.78			
apital Cost (\$)	Air Conditioning (Window)	Fixed/Single Speed Compressor	Medium	2	177.74			
ifespan (years)	Air Conditioning (Window)	Variable Speed Compressor	Medium	2	140.45			
	Air Conditioning (Window)	Variable Speed Compressor	Hgh	2	138.1			
Grid Emission Factor (tCO2e/MWh)	Showing 1 to 12 of 12 rows 20 a rows per page							
verage Electricity Tariff (USD/kWh)								

SDG 7 roadmap development process using NEXSTEP

Country engagement

Receive request from country

Recruit national consultant

First mission – stakeholder identification

Data collection

Share data template

Data collected by consultant and stakeholders

Modelling

Energy & emissions modelling

Cost-benefit analysis

Scenario analysis and ranking

Policy analysis and recommendations

Capacity building

ESCAP undertakes second mission

Hands-on training on using NEXSTEP

Country team develops the draft roadmap

Stakeholder consultation on the draft roadmap

Roadmap

Refinement, adjustment (if any)

Country team finalizes the roadmap

National acceptance

Country team and consultant prepare a summary

Summary submitted to government

Roadmap is officially published and launche

Structure of the roadmap

Executive summary

- Summary for policymakers
- Key results and findings
- Important policy directions

Introduction

Backgroun d

Targets and indicators for the country

Emission reduction target

NEXSTEP methodology

Key steps

Scenario definitions

Economic analysis

Overview of the energy sector

Current situation

Energy profile of the country

Existing policies & targets

Energy resources

Energy balance

Energy demand outlook

SDG 7 targets by 2030

Energy demand

Achieving key goals and targets

Power generation

Policy actions

Raising ambition

Enhancing EE

Fossil fuel phase out

Price on carbon

Green financing

MACC

COVID-19 recovery

Importance of sust. energy

Reducing financial risks

Savings from the energy sector

Restructuring fiscal measures

Revisiting existing policies

Comparing CPs and NEXSTEP analysis

Identifying gaps

Recommendati ons to bridge the gap

Thank you

