First Technology Safety Systems

FLEX-PLI-GTR Development

Bernard Been
FTSS Europe
FLEX-PLI-TEG 5th meeting
BASt, Bergisch Gladbach, Germany
December 7, 2007
Updated Version December 14, 2007

Content

- FLEX-PLI-GTR Development Project
- Design Review Results
- Input from FLEX-PLI-TEG
- Project Progress
 - Solutions
 - Conceptual design
 - Comparison of versions GT-GTR

FLEX-PLI-GTR Development Project

- JAMA/JARI requested FTSS to develop the FLEX-PLI GTR version
 - Develop FLEX-GTR final design
 - Solve remaining issues
 - Global supplier FLEX-PLI-GTR
- Starting point of GTR Development is a Design Review by FTSS
 - List of found issues was discussed
 - JARI and JAMA accepted found items
- Conceptual design December 07
- Design Freeze February 08
- Delivery 3 FLEX-PLI-GTR prototypes by October 2008

Design review

- FTSS held design review of the FLEX-PLI-GT
- April 3-4, 2007 at BASt
- To assess:
 - control of dummy response, measurement accuracy, manufacturability, durability, procedures and documentation
- Findings were reported
- 47 action items were found

Results Design Review

- The durability has not been extensively tested so far, as only well performing vehicles were tested
- The overload capacity beyond the injury threshold may be insufficient for vehicle development programs
 - OEM's and test houses should set a design requirement.
- A-symmetric sensitivity of MCL, ACL and PCL measurements to LH-RH off axis loading
- Knee joint twist causes inaccuracy in ligament elongation measurements
- Evaluation of bending moment calibration method
- The dynamic calibration test is not representative for the loading during vehicle tests and the input pulse is not controlled
- Internal wiring protection should be improved
- Control of free flight trajectory influenced by large umbilical (higher channel count)
- Temperature sensitivity of strain gauges
- **Durability** issues
- Material specifications and sourcing may be a problem
- Completion of documentation needs attention

 A-symmetric sensitivity to off axis loading due to potential Y-axis bending

 Lateral-Posterior loading will engage LCL and ACL

 Lateral-Anterior loading will engage PCL and MCL

 On a symmetric vehicle a RH impact may give a different response from LH impact

- Knee joint twist causes inaccuracy in ligament elongation measurements
- Cruciate ligaments exert a twist moment (z-axis along bone) between femur and tibia
- Correct angle is maintained by friction only
- Rotation between femur and tibia is likely to occur
 - Inaccurate ligament elongation measurement likely

- Evaluate calibration method of bending moment strain gauges
- Dynamic test?
- Accuracy of position of strain gauges with respect to load transducers?
- Displacement of supports during bending?
- Tensile loading in zaxis?

- Dynamic calibration method for control of dynamic response
- Impact pulse controlled by neoprene and rubber sheets
- Neoprene and rubber sheet material may deteriorate over time: not controlled
- No feedback on severity of impact pulse
- Test is not representative for the loading during vehicle tests

- Review Dynamic Calibration Results
- A limited comparison was done between car test and calibration test results to evaluate how well calibration test represents the vehicle test
 - Tibia calibration loading lower then vehicle testing
 - Femur bending is closer (but still lower then) to vehicle tests
 - Femur is not assessed for injury
 - Conclusion: Calibration procedure seems not to match with

vehicle test results

	1box	sport	calibration	Difference
Femur A3	130-190	110-240	120-130	Low match
Femur A2	110-200	180-250	100-110	Lower
Femur A1	80-120	110-150	75-85	Low match
Tibia A1	180-230	80-150,	110-120	Low match
Tibia A2	180-260	100-170	90-100	Lower
Tibia A3	160-230	110-180	60-70	Much Lower
Tibia A4	100-150	130-160	30-40	Much Lower
MCL	10-19	9-19	12-14	Match
ACL	4-7	6-9	2-4	Lower
PCL	6-10	3-11	2-4	Lower

Durability issues:

- Internal wiring
- Cable plastic sleeving
- Double side tape bonding
- Blue nylon liner damaged
- Innerside of neoprene skin sheets
- Stringpot stop

Input from other sources

ACEA

- Robustness of test wiring is not acceptable
- Function on a "marginal" performing vehicle has to be checked
- ACL and PCL results are dependent on the side of the vehicle that is impacted, thus making pedestrian test results asymmetrical
- Certification and calibration procedures for the components of the legform and the sensors should be defined
- Bending moments measurement strain gauges should be full bridge configuration
 - Directly attached to the bone elements
 - To avoid strain gauge elongation due to temperature variations

Input from other sources

BGS/BASt

- Edged shape of the legform's impact surface seems to increase rotation around z-axis during impact: possible reason for scatter in ACL and PCL results
- Cables likely to be damaged when the impactor falls on them
- Influence of cables on the flight behaviour
- Cable guiding with sharp angles and around sharp edges, cables likely to be damaged near the impactor
- Tibia surface plate damage
- Neoprene skin: Zippers very sensitive, skin gets caught in spring ends, skin damaged by sharp edges of knee
- Separation of lowest segment impact face

FLEX-GTR Development Progress

Calibration of Bending Moment

 Proposed procedures for bones, knee & ass'y will be followed

- Quasi static test
 - Loading rate t.b.d.
- Calibration of bone only
 - Supply of calibrated spare parts
- Measurement of test force, deflection and strain gauge voltage
- Accurate control of probe and support distance I and I/2
- Roller end support to annihilate tension / compression in bone
- Analytical correction for support distance change I/2" due to bending

Revision: A

16 - May 07

First Technology
Innovative Solutions

Dynamic Calibration Procedure

- Use current test fixture and drop height
- Use Aluminium honeycomb deceleration material
- Control input pulse with x-acceleration
- Control parameters
 - Drop height
 - Ax
 - MCL, ACL, PCL (and LCL)
 - Tibia bending moments
 - Femur bending moments
 - Target corridor ±10% from average

Dynamic Calibration Procedure <u>Development</u>

- FTSS will investigate possibilities to achieve better match with vehicle loading in certification testing
 - Increasing input pulse (raise the pendulum)
 - Mounting additional mass to lower end of assembly during certification
 - Turn upside down the test set up to load tibia higher (pivot on the tibia in stead of on the femur)
 - Lower the striking surface to impact the top of the tibia
 - Combination
- We could start development testing with FLEX GT to achieve earlier results

On Board Data Acquisition

- Improve free flight motion control
- Optional on board
 Data Acquisition System standard
- Messring M=BUS selected
 - Most compact system currently available
 - http://www.mbus-sensor.de
- 2 units 6 channel Loggers
 - 6 channel logger
 - 15 grams
 - 40*25*14mm
 - Internal battery
 - 20kHz sampling
 - 16 bit resolution
 - Signal conditioning
 - Etc.

Wiring Diagram Tibia

Wiring Diagram Femur

Conceptual design

To avoid A-symmetric sensitivity

 Move ligament elongation measurement to centre line

- To avoid knee twist
 - Use two sets of cruciate ligaments
 - To neutralize twist moment
- Cruciate ligaments 8 springs
 - DBØ12xØ6x40mm; 71.6N/mm
 - May need to go Ø3mm cable
 - Optimized space for DAS & connector
- Lateral ligaments 16 springs same
 - DBØ18xØ9x80mm; 76.7N/mm

- Position of ligament elongation sensors on centre line
- Various concepts were investigated
 - On medial face
 - On anterior-posterior faces
 - In the centre tibia cavity
- Centre tibia cavity selected
 - Best control manufacturing tolerance
 - Best protection to sensors
 - Least angle string routing
 - Provides more space for DAS, connectors and wiring

Space Age Control
150 series
19*19*10mm
49G acceleration
38mm stroke
2xLH & 2xRH pull
Bronze wire guides

- Skin zipper protection
- Wear resistant material on skin.
 - Inside outside?
 - Schoeller Keprotec, <u>www.schoeller-textiles.com</u>
- Integration of inner and outer segment into one component
 - Bottom Tibia segment one piece aluminium?
 - Access holes for screws acceptable?
- Mark bone for assembly position reference
- Round all sharp edges in wire route
- Redesign FLEX-PLI link to calibration fixture
- Hex or flat on ligament cable ends for easy spring adjustment
- Wear of ligament cable sleeves
 - Remove plastic sleeves from cables?
 - Apply bronze bushing in meniscus?

Further Activities

- Development of User Manual, including procedures, training, etc.
- Material tests
 - Characterize dynamic response of current and new source materials
 - Neoprene, Synthetic rubber 30 Shore A, 45 Shore A
- Temperature sensitivity tests
 - Calibration at various temperatures
- Anything else that needs addressing? Any concerns?
- Possible usefull Options?
 - Film targets?
 - Angular Rate Sensors to track free flight motion/rotation?
 - Three axis accelerometers: <u>Tibia</u>? Femur?

Comparison GT - GTR

- The project aims at keeping the dynamic response of the GTR as close as possible to current GT version
- GTR aimed to maintain GT Mass and Mass distribution
 - FLEX-GT mass breakdown study was performed
- GTR aimed at maintaining GT dynamic response
 - FTSS will perform material characterization tests
 - GTR materials will be as close as possible
 - Bone material and dimensions will remain the same
- Changes in the knee will not affect bending moment
 - Lateral Ligaments and springs and spacing in y-direction (impact) remain the same
 - Cruciate ligaments total force may slightly change, spacing in ydirection and pull direction remain the same
 - Elongation sensors MCL, PCL, ACL, LCL remain in line with ligaments, position projected to mid knee position

Comparison GT - GTR

- GT and GTR cruiciate ligament and spring location remain the same
 - All dimensions and interactive geometry remain the same
- Accommodation connectors and DAS -> larger space in the side -> mass compensated

Form: 07-163 Revision: A 16 - May 07

Cruciate Ligament Springs

- •F_{ligament GT} = 76.7*16 = 1227N •Total F_{ligament GT} = 2 * 1227 = 2454N
- •8 Lateral ligaments DBØ18xØ9x80mm

•FLEX-PLI-GTR

• $F_{ligament-GTR} = 71.6*8 = 573N$ •Total $F_{ligament-GTR} = 4*71.6*8 = 2292N$

Lateral ligaments unchanged

•Cruciate ligaments contribute ~20% to bending moment

•Effect ~-1.3%

Further Activities

- CAE model development
 - FTSS proposes to develop a Flex-PLI-GTR CAE model through a consortium project parallel to the hardware development
 - FTSS offers to take the responsibility to develop the models and co-ordinate the project
 - The model(s) will become part of the FTSS model database and will be maintained and further enhanced accordingly
 - The consortium members will fund the consortium project and will receive a free license allowing to use the model in the next 3 years

THANK YOU FOR YOUR ATTENTION!

