SGS 04 - 07

Hydrogen Fuel Cell Vehicle Safety

Research to Support Rulemaking/GTR Objectives

September 2008

Draft Deliberative Document

Overview

- GTR Action Plan
- Safety Issues
- Alternative Approaches
- Research/Rulemaking Goals
- Research Tasks
- Schedule

GTR Action Plan

ECE/TRANS/WP.29/2007/41 (April 2007)

Objective

- Attain equivalent levels of safety to conventional gasoline vehicles
- Develop a global technical regulation concerning hydrogen/fuel cells
- Performance based and does not restrict future technologies
- Content:
 - Performance requirements for fuel containers
 - Electrical isolation
 - Maximum allowable hydrogen leakage

Safety issues to be addressed

- Fuel system crashworthiness
 - Hydrogen leakage limits
 - Electrical integrity of high voltage fuel cell propulsion system
 - High pressure container safety
- Safety level consistent with gasoline, CNG, conventional electric hybrids
 - FMVSS Nos. 301, 303, 304, and 305

Approaches to address fuel system crashworthiness

- Hydrogen leakage limits
 - Hydrogen (SAE) vs. helium surrogate (SAE, Japan, OICA, FMVSS)
 - High pressure vs. low pressure and scaling up (SAE)
- Electrical integrity of high voltage fuel cell propulsion system
 - Active fuel cell with hydrogen onboard vs.
 - Inactive fuel cell, system "off" (SAE, AIAM, Japan)
- High pressure container safety
 - Cumulative life cycle and extreme use durability (SAE) vs. discrete testing (i.e., FMVSS, CSA/NGV2, HGV2, ISO, EIHP, etc.)
 - Localized flame impingement (SAE) vs. bonfire (FMVSS, etc.)
 - High pressure (FMVSS No. 303) and/or low pressure (SAE,GM) vulnerability to impact is greater at low pressure

Issues Associated with Each Fueling Approach for Crash Testing

- High pressure hydrogen
 - + Electrical system is operational
 - + Worse case for leak rate
 - Poses additional fire hazard
- High pressure helium
 - + Consistent with FMVSS Nos. 301, 303
 - + Non-flammable
 - Surrogate leak rate is slightly different
 - Electrical system <u>is not</u> operational
- Low pressure hydrogen option
 - + Electrical System operational
 - Must scale up leak rate to represent worse case at high pressure
 - +/- Cylinders more vulnerable to impact at low pressure

Research/Rulemaking goals

- Conduct research to assess all proposed alternatives
 - Confirm that selected alternative detects potential failure
- Prescribe additional requirements if results indicate safety need, e.g.:
 - Localized flame impingement test replaces bonfire test for hydrogen containers
 - Extend post-crash leakage measurement beyond 60 minutes to adjust for reduced flow rate of helium through same sized orifice
- Prefer selecting option that is analogous to and consistent with existing requirements
 - High pressure helium
 - Single crash test for both electrical isolation and fuel leakage

Research Tasks to Support Rulemaking/GTR Objectives

- Localized flame impingement on hydrogen storage cylinders
- Cumulative cylinder life cycle testing
- Comparative assessment of fueling options for crash testing
- Fire safety of proposed leakage limits
- Electrical isolation testing in the absence of hydrogen

Localized flame impingement on hydrogen storage cylinders

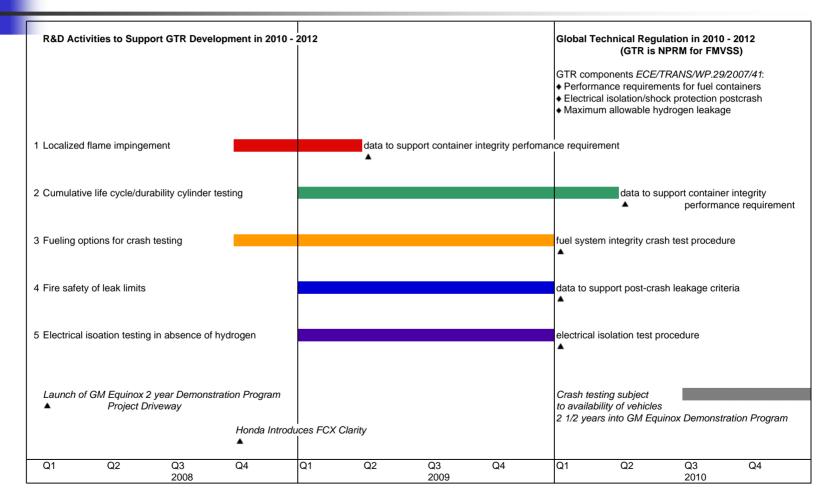
- FMVSS No. 304
 - Requires bonfire test
 - Cylinder must survive engulfing fire for 20 minutes or vent contents
- Localized flame impingement (SAE)
 - Real world data indicates Type IV composite cylinders do not vent in localized fire
 - Lack of heat transfer to PRD
 - Composite loses structural integrity, resulting in catastrophic rupture
- Research Task:
 - Localized fire test procedure Developed by Powertech under contract to Transport Canada.
 - Verification testing Conducted under contract to NHTSA. Cylinders which have failed in real world fires will be tested and mitigating technologies will be assessed (heat transfer, sensing, shielding)
- Possible Outcome:
 - Requirement for localized flame test

Cumulative cylinder life cycle testing

- Generate simulated real-world life cycle data
 - SAE TIR 2579 expected service and durability testing. (pneumatic gas cycling, parking, extreme temperature, flaw, chemical tolerance, burst)
 - Test procedures developed under contract to DOE/NREL
 - Japan considering similar requirements in new standard, JARI 001 upgrade.
- Research Task:
 - Initial results indicate that altering test protocol effects results
 - Conduct life cycle testing on representative hydrogen storage systems, vary test conditions to represent different service conditions
- Possible Outcome:
 - Requirement for pneumatic rather than hydraulic pressure cycling test (FMVSS No. 304)
 - Requirement for post pressure-cycle burst strength

Comparative assessment of fueling options for crash testing

- Fueling options advocated by industry
 - High pressure hydrogen (SAE)
 - High pressure helium (SAE, Japan)
 - Low pressure hydrogen (SAE,GM)
- Research task:
 - Conduct testing to compare container vulnerability to impact at high and low pressure fill
 - Conduct leakage tests of hydrogen and helium at high and low pressure fill for a range of cylinder sizes
- Possible Outcome:
 - Selection of most appropriate fill option for assessing pass/fail leakage and fuel system vulnerability per FMVSS crash conditions


Fire safety of proposed leakage limits

- Hydrogen concentrations exceed lower flammability limit in vehicle compartments
- Research Task:
 - Conduct hydrogen ignition tests in the trunk, engine and occupant compartments of vehicles and crash tested ICE vehicles
- Outcome:
 - Confirmation of the fire safety of proposed leakage limits, which are currently based on the thermal energy equivalent to gasoline

Electrical isolation testing in the absence of hydrogen

- Fuel cell produces no voltage when crash test is conducted using helium surrogate
 - Measure isolation by applying test voltage from an external source (megohmmeter)
- Research Task:
 - Conduct isolation testing with no hydrogen present, using megohmmeter
- Possible Outcome:
 - Confirm that testing can be conducted with the megohmmeter, without inducing damage to the vehicle propulsion circuit

R&D Timeline to Support Rulemaking Objectives

Schedule

- Localized flame impingement on hydrogen storage cylinder: 6 months
- Cumulative cylinder life cycle testing: 15 months
- Comparative assessment of fueling options for crash testing: 15 months
- Fire safety of proposed leakage limits: 12 months
- Electrical isolation testing in the absence of hydrogen: 12 months